Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d)Điều kiện xác định x khác 1 và x khác -2 Đặt \(a=\frac{x-1}{x+2}\);\(b=\frac{x-3}{x-1}\)
Ta có \(a.b=\frac{x-1}{x+2}.\frac{x-3}{x-1}=\frac{x-3}{x+2}\)
Do đó phương trình viết thành \(a^2+a.b-2b^2=0\)
\(\Leftrightarrow a^2-b^2+a.b-b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)+b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+2b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\a=-2b\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\frac{x-1}{x+2}=\frac{x-3}{x-1}\\\frac{x-1}{x+2}=\frac{-2.\left(x-2\right)}{x-1}\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=\left(x-3\right).\left(x+2\right)\\\left(x-1\right)^2=-2.\left(x^2-4\right)\end{cases}}}\)
Đến đây bạn có thể giải ra tìm x đc
ĐK:\(\hept{\begin{cases}x\ge\frac{2}{3}\\y\ge\frac{11}{3}\end{cases}}\)
Giải (1)
\(\left(1\right)\Leftrightarrow\left(x-y+3\right)\left(x-1\right)=0.\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=y\\x=1\end{cases}}\)
Xét x=1
\(\left(2\right)\Leftrightarrow5\left(\sqrt{3y-11}+\sqrt{y}\right)=15\)
\(\Leftrightarrow\sqrt{3y-11}+\sqrt{y}=3\)
\(\Leftrightarrow\left(\sqrt{3y-11}-1\right)+\left(\sqrt{y}-2\right)=0\)
\(\Leftrightarrow\frac{3\left(y-4\right)}{\sqrt{3y-11}+1}+\frac{y-4}{\sqrt{y}+2}=0\)
\(\Leftrightarrow\left(y-4\right)\left(\frac{3}{\sqrt{3y-11}+1}+\frac{1}{\sqrt{y}+2}\right)=0\)
Vì \(y\ge\frac{11}{3}\)nên \(\left(\frac{3}{\sqrt{3y-11}+1}+\frac{1}{\sqrt{y}+2}\right)>0\)
\(\Rightarrow y-4=0\Rightarrow y=4\left(tm\right)\)
Xét x+3=y
\(\left(2\right)\Leftrightarrow4x^2-24x+35=5\left(\sqrt{3x-2}+\sqrt{x+3}\right)\)
Áp dụng bđt AM-GM ta có
\(VP\le5\left(\frac{3x-2+1+x+3+1}{2}\right)=\frac{5\left(4x+3\right)}{2}\)
\(\Rightarrow2\left(4x^2-24x+35\right)\le20x+15\)
\(\Leftrightarrow2\left(4x^2-34x+\frac{55}{2}\right)\le0\)
\(\Leftrightarrow\left(2x-\frac{17}{2}\right)^2-\frac{179}{4}\le0\)(3)
mà \(x\ge\frac{2}{3}\Rightarrow\left(2x-\frac{17}{2}\right)^2-\frac{179}{4}\ge\frac{1849}{36}-\frac{179}{4}>0\)(mâu thuẫn với (3))
=> TH này không xảy ra
Vậy (x,y)=(1,4)
ღ๖ۣۜLinh's ๖ۣۜLinh'sღ]
Mới xem qua thì thấy dòng: thứ 3 từ dưới lên không đúng.
Nếu em thử lấy \(x=\frac{17}{4}>\frac{2}{3}\)
Vẫn thỏa mãn (3)
a) x=8 hoặc x=-1
Đặt ẩn phụ
g) x=1 hoặc x=2 hoặc x=-3
Phân tích thành nhân tử rồi xét giá trị
\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(x+1\right)\left(8-x\right)}=3\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+1\ge0\\8-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-1\\x\le8\end{cases}\Rightarrow}-1\le x\le8}\)
Đặt \(\sqrt{1+x}=a\Rightarrow x+1=a^2.\)
\(a+b+ab=3\)
và \(\sqrt{8-x}=b\Rightarrow8-x=b^2\)\(\left(a,b\ge0\right)\)
Cộng hai vế xuống ta có :
\(a^2+b^2=x+1+8-x=9\)
Theo phương trình ta lại có :
\(a+b+ab=3\)
Ta có hệ phương trình :
\(\hept{\begin{cases}a^2+b^2=9\\a+b+ab=3\end{cases}}\)
Giải hệ ra tính nốt nhá :)) Mình nghĩ bài này chỉ làm theo cách này ngắn nhất thôi