Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(\frac{3}{n}-\frac{4}{15}\right)\sqrt{x-1}=\frac{17}{n}-\frac{23}{15}\)
\(\Leftrightarrow\sqrt{x-1}=\frac{\frac{17}{n}-\frac{23}{15}}{\frac{3}{n}-\frac{4}{15}}=\frac{23n-255}{4n-45}\)
+Nếu \(\frac{23x-255}{4x-45}<0\Leftrightarrow\)\(\frac{255}{23}\left(\approx11,08\right)<\)\(x<\)\(\frac{45}{4}\left(=11,25\right)\) thì \(VT\ge0>VP\)=> pt vô nghiệm.
+Nếu \(\frac{23x-255}{4x-45}>0\Leftrightarrow x<\)\(\frac{255}{23}\text{ hoặc }x>\frac{45}{4}\) thì \(pt\Leftrightarrow x=\left(\frac{23n-255}{4n-45}\right)^2+1\)
\(\text{a) }10\left(\frac{x-2}{x+1}\right)^2+\left(\frac{x+2}{x-1}\right)^2-11\frac{x^2-4}{x^2-1}=0\\ DKXD:x\ne-1;x\ne1\\ \Leftrightarrow10\left(\frac{x-2}{x+1}\right)^2+\left(\frac{x+2}{x-1}\right)^2-11\frac{\left(x+2\right)\left(x-2\right)}{\left(x+1\right)\left(x-1\right)}=0\)
Đặt \(\frac{x-2}{x+1}=a;\frac{x+2}{x-1}=b\)
\(Pt\Leftrightarrow10a^2+b^2-11ab=0\\ \Leftrightarrow10a^2-10ab-ab+b^2=0\\ \Leftrightarrow10a\left(a-b\right)-b\left(a-b\right)=0\\ \Leftrightarrow\left(10a-b\right)\left(a-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}10a-b=0\\a-b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}10a=b\\a=b\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{10\left(x-2\right)}{x+1}=\frac{x+2}{x-1}\left(1\right)\\\frac{x-2}{x+1}=\frac{x+2}{x-1}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow10\left(x-2\right)\left(x-1\right)=\left(x+1\right)\left(x+2\right)\\ \Leftrightarrow10\left(x^2-3x+2\right)=x^2+3x+2\\ \Leftrightarrow9x^2-33x+18=0\\ \Leftrightarrow9x^2-27x-6x+18=0\\ \Leftrightarrow9x\left(x-3\right)-6\left(x-3\right)=0\\ \Leftrightarrow\left(9x-6\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\9x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{2}{3}\end{matrix}\right.\left(Tm\right)\)
\(\left(2\right)\Leftrightarrow\left(x-2\right)\left(x-1\right)=\left(x+1\right)\left(x+2\right)\\ \Leftrightarrow x^2-3x+2=x^2+3x+2=0\\ \Leftrightarrow6x=0\\ \Leftrightarrow x=0\left(Tm\right)\)
Vậy pt có tập nghiệm \(S=\left\{0;3;\frac{2}{3}\right\}\)
\(\text{b) }\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}=12\left(\frac{x-2}{x-4}\right)^2\\ DKXD:x\ne2;x\ne4\\ \Leftrightarrow\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-2}\cdot\frac{x-2}{x-4}-12\left(\frac{x-2}{x-4}\right)^2=0\)
Đặt \(\frac{x+1}{x-2}=a;\frac{x-2}{x-4}=b\)
\(Pt\Leftrightarrow a^2+ab-12b^2=0\\ \Leftrightarrow a^2+4ab-3ab-12b^2=0\\ \Leftrightarrow a\left(a+4b\right)-3b\left(a+4b\right)=0\\ \Leftrightarrow\left(a-3b\right)\left(a+4b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a-3b=0\\a+4b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=3b\\a=-4b\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{x+1}{x-2}=\frac{3\left(x-2\right)}{x-4}\left(1\right)\\\frac{x+1}{x-2}=\frac{-4\left(x-2\right)}{x-4}\left(2\right)\end{matrix}\right.\)
Tự giải tiếp nha.
ĐKXĐ: \(-3\le x\le3;x\ne0\)
Đặt \(\sqrt{9-x^2}=a\left(a\ge0;a\ne3\right)\Rightarrow x^2=9-a^2\),khi đó pt đã cho trở thành:
\(\frac{9-a^2}{3+a}+\frac{1}{4\left(3-a\right)}=1\)
\(\Rightarrow3-a+\frac{1}{4\left(3-a\right)}=1\)
\(\Rightarrow\frac{4\cdot\left(3-a\right)^2+1}{4\left(3-a\right)}=1\Rightarrow4a^2-24a+37=12-4a\)
\(\Rightarrow4a^2-20a+25=0\Rightarrow\left(2a-5\right)^2=0\Rightarrow2a-5=0\)
\(\Rightarrow a=\frac{5}{2}\)(tm điều kiện),theo cách đặt ta có
\(\sqrt{9-x^2}=\frac{5}{2}\Rightarrow9-x^2=\frac{25}{4}\Rightarrow x^2=\frac{11}{4}\Rightarrow x=\frac{\sqrt{11}}{2}\)(TMĐKXĐ)
Vậy pt đã cho có nghiệm duy nhất là \(x=\frac{\sqrt{11}}{2}\)
Xửa đề:
\(\left(x+1\right)\left(x+4\right)+3\left(x+4\right)\sqrt{\frac{x+1}{x+4}}-18=0\)
Xet \(x+4>0\)
\(\Rightarrow\left(x+1\right)\left(x+4\right)+3\sqrt{\left(x+1\right)\left(x+4\right)}-18=0\)
Đặt \(\sqrt{\left(x+1\right)\left(x+3\right)}=a\)
\(\Rightarrow a^2+3a-18=0\)
Trường hợp \(x+4< 0\)
Làm tương tự
Mới lớp 8, chịu
Mà hình như trong pt phân số thứ 2 thiếu bình phương thì phải
Đặt \(\hept{\begin{cases}x-\frac{9}{2}=a\\x-\frac{11}{4}=b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^4+b^4=1\\a=b-\frac{7}{4}\end{cases}}\)
\(\Rightarrow\left(b-\frac{7}{4}\right)^4+b^4-1=0\)
Giờ chứng minh nó vô nghiệm thôi