K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 7 2020

\(\Leftrightarrow\left\{{}\begin{matrix}a^3+15ab^2=2\\6a^2b+10b^3=2\end{matrix}\right.\)

\(\Rightarrow a^3+15ab^2-6a^2b-10b^3=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-5ab+10b^2\right)=0\)

\(\Leftrightarrow a=b\)

Thay vào pt đầu:

\(a^3+15a^3=2\Rightarrow a^3=\frac{1}{8}\Rightarrow a=b=\frac{1}{2}\)

Bìa 1: Gải các hệ phương trình: a) \(\left\{{}\begin{matrix}x-y=3\\3x-4y=2\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\) Bài 2: Gải các hệ phương trình: a) \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\) b)...
Đọc tiếp

Bìa 1: Gải các hệ phương trình:

a) \(\left\{{}\begin{matrix}x-y=3\\3x-4y=2\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)

Bài 2: Gải các hệ phương trình:

a) \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\left(x+1\right)\left(y-1\right)=xy-1\\\left(x-3\right)\left(y+3\right)=xy-3\end{matrix}\right.\)

Bài 3: Gải các hệ phương trình:

a) \(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{2y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{2y-1}=1\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\dfrac{1}{2x+y}+\dfrac{1}{x-2y}=\dfrac{5}{8}\\\dfrac{1}{2x+y}-\dfrac{1}{x-2y}=\dfrac{3}{8}\end{matrix}\right.\)

c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}\left|x-1\right|+\left|y+2\right|=2\\4\left|x-1\right|+3\left|y+2\right|=7\end{matrix}\right.\)

Bài 4: Cho hệ phương trình \(\left\{{}\begin{matrix}\left(3a-2\right)x+2\left(2b+1\right)y=30\\\left(a+2\right)x-2\left(3b-1\right)y=-20\end{matrix}\right.\) Tìm các giá trị của a,b để hệ phương trình có nghiệm (3;-1)

cảm ơn mn trước ạ ! hehe

2
12 tháng 1 2019

3a)\(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{2y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{2y-1}=1\end{matrix}\right.\) (ĐK: x≠2;y≠\(\dfrac{1}{2}\))

Đặt \(\dfrac{1}{x-2}=a;\dfrac{1}{2y-1}=b\) (ĐK: a>0; b>0)

Hệ phương trình đã cho trở thành

\(\left\{{}\begin{matrix}a+b=2\\2a-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\2\left(2-b\right)-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\4-2b-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\b=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{7}{5}\left(TM\text{Đ}K\right)\\b=\dfrac{3}{5}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Khi đó \(\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{7}{5}\\\dfrac{1}{2y-1}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\left(x-2\right)=5\\3\left(2y-1\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x-14=5\\6y-3=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{7}\left(TM\text{Đ}K\right)\\y=\dfrac{4}{3}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y)=\(\left(\dfrac{19}{7};\dfrac{4}{3}\right)\)

b) Bạn làm tương tự như câu a kết quả là (x;y)=\(\left(\dfrac{12}{5};\dfrac{-14}{5}\right)\)

c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\)(ĐK: x≥1;y≥0)

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+4\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49\left(x-1\right)=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49x-49=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{218}{49}\\y=\dfrac{4}{49}\end{matrix}\right.\left(TM\text{Đ}K\right)\)

31 tháng 12 2022

Bài 4:

Theo đề, ta có hệ:

\(\left\{{}\begin{matrix}3\left(3a-2\right)-2\left(2b+1\right)=30\\3\left(a+2\right)+2\left(3b-1\right)=-20\end{matrix}\right.\)

=>9a-6-4b-2=30 và 3a+6+6b-2=-20

=>9a-4b=38 và 3a+6b=-20+2-6=-24

=>a=2; b=-5

NV
23 tháng 6 2019

Câu 1:

\(\left\{{}\begin{matrix}\left(x+y\right)\left(x^2+y^2\right)=15\\\left(x+y\right)\left(x-y\right)^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2\right)=5\left(x+y\right)\left(x-y\right)^2\)

\(\Leftrightarrow x^2+y^2=5\left(x-y\right)^2\)

\(\Leftrightarrow2x^2-5xy+2y^2=0\)

\(\Leftrightarrow\left(2x-y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2x\\x=2y\end{matrix}\right.\)

TH1: \(y=2x\Rightarrow3x\left(x^2+4x^2\right)=15\Leftrightarrow x^3=1\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

TH2: \(x=2y\Rightarrow3y\left(4y^2+y^2\right)=15\Rightarrow y^3=1\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

NV
23 tháng 6 2019

Câu 2:

\(\left\{{}\begin{matrix}x^3-y^3=9\\3x^2+6y^2=3x-12y\end{matrix}\right.\)

\(\Leftrightarrow x^3-y^3-3x^2-6y^2=9-3x+12y\)

\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)

\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)

\(\Leftrightarrow x-1=y+2\Rightarrow x=y+3\)

\(\Rightarrow\left(y+3\right)^2+2y^2=y+3-4y\)

\(\Leftrightarrow y^2+3y+2=0\Rightarrow\left[{}\begin{matrix}y=-1\Rightarrow x=2\\y=-2\Rightarrow x=1\end{matrix}\right.\)

27 tháng 7 2018

\(a.\left\{{}\begin{matrix}3x+y=-2\\-9x-39=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-2-3x\\-9x-36=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2-3x\\-9x=45\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-2-3x\\x=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=13\end{matrix}\right.\)

\(b.\left\{{}\begin{matrix}x+y=101\\-x+y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=101-y\\-x+y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=101-y\\-101+y+y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=101-y\\2y=100\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=101-y\\y=50\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=51\\y=50\end{matrix}\right.\)

\(c.\left\{{}\begin{matrix}x+y=2\\\dfrac{1}{2}x+y=\dfrac{5}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2-y\\\dfrac{1}{2}x+y=\dfrac{5}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2-y\\1-\dfrac{1}{2}y+y=\dfrac{5}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2-y\\\dfrac{1}{2}y=\dfrac{1}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2-y\\y=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)

13 tháng 12 2019

Nguyễn Thị Ngọc Thơ, Nguyễn Việt Lâm, @No choice teen, @Trần Thanh Phương, @Akai Haruma

giúp e vs ạ! Cần gấp!

thanks nhiều!