K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2019

\(\frac{144}{x+2}-\frac{100}{x}=2\)

\(\frac{144}{x-2}.x\left(x+2\right)-\frac{100}{x}.x\left(x+2\right)=2.x\left(x+2\right)\)

144x - 100(x + 2) = 2.x(x + 2)

x = 10

=> x = 10

K chắc nhá :w

21 tháng 2 2019

\(ĐK:x\ne-2;x\ne0\)

\(\frac{144}{x+2}-\frac{100}{x}=2\)

\(\Leftrightarrow\frac{144}{x+2}-\frac{100}{x}-2=0\Leftrightarrow\frac{144x-100x-200-2x^2-4x}{\left(x+2\right)x}=0\)

\(\Leftrightarrow\frac{40x-2x^2-200}{\left(x+2\right)x}=0\Leftrightarrow40x-2x^2-200=0\Leftrightarrow20x-x^2-200=0\)

\(\Leftrightarrow-\left(20x-x^2-200\right)=0\Leftrightarrow x^2-20x+200=0\)

\(\Leftrightarrow\left(x-10\right)^2+100=0\left(\text{vô lí}\right)\)

\(\text{Vậy: pt vô nghiệm}\)

NV
22 tháng 2 2020

ĐKXĐ: ...

\(\Leftrightarrow\frac{2\left(x^2+1\right)}{\left(1-x^2\right)^2}+\frac{1}{4x^2}=\frac{\left(3x^2+1\right)^2}{144}\)

Đặt \(\left\{{}\begin{matrix}1-x^2=a\\4x^2=b\end{matrix}\right.\)

\(\Rightarrow\frac{2a+b}{a^2}+\frac{1}{b}=\frac{\left(a+b\right)^2}{144}\)

\(\Leftrightarrow\frac{\left(a+b\right)^2}{a^2b}=\frac{\left(a+b\right)^2}{144}\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\left(vn\right)\\a^2b=144\end{matrix}\right.\)

\(\Leftrightarrow\left(1-x^2\right)^2.4x^2=144\)

\(\Leftrightarrow\left(2x-2x^3\right)^2=12^2\)

\(\Leftrightarrow...\)

<=> \(\hept{\begin{cases}\frac{2}{x}+\frac{4}{y}=\frac{2}{3}\\\frac{2}{x}-\frac{3}{y}=\frac{1}{4}\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{7}{y}=\frac{5}{12}\\\frac{1}{x}+\frac{2}{y}=\frac{1}{3}\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{14}{3}\\y=\frac{84}{5}\end{cases}}\)

8 tháng 3 2020

Đặt \(x+1=u;y-2=v\)

Hệ trở thành \(\hept{\begin{cases}\frac{2}{u}+\frac{1}{v}=\frac{1}{3}\\\frac{3}{u}+\frac{2}{v}=\frac{1}{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{4}{u}+\frac{2}{v}=\frac{2}{3}\left(1\right)\\\frac{3}{u}+\frac{2}{v}=\frac{1}{5}\left(2\right)\end{cases}}\)

Lấy (1) - (2), ta được\(\frac{1}{u}=\frac{7}{15}\Leftrightarrow u=\frac{15}{7}\)

\(\Rightarrow x=\frac{15}{7}-1=\frac{8}{7}\)

Từ đó tính được \(y=\frac{1}{3}\)

Vậy hệ có 1 nghiệm \(\left(\frac{8}{7};\frac{1}{3}\right)\)

<=> \(\hept{\begin{cases}\frac{4}{x+1}+\frac{2}{y-2}=\frac{2}{3}\\\frac{3}{x+1}+\frac{2}{y-2}=\frac{1}{5}\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{1}{x+1}=\frac{7}{15}\\\frac{3}{x+1}+\frac{2}{y-2}=\frac{1}{5}\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{8}{7}\\y=\frac{7}{5}\end{cases}}\)