Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}+\dfrac{1}{x^2-11x+30}=\dfrac{1}{8}\)
ĐKXĐ: x khác 2;3;4;5;6
\(\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2-11x+30}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}+\dfrac{1}{\left(x-5\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-4}+\dfrac{1}{x-4}-\dfrac{1}{x-5}+\dfrac{1}{x-5}-\dfrac{1}{x-6}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x-6}-\dfrac{1}{x-2}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{x+6-x+2}{\left(x-2\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{4}{\left(x-2\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow32=x^2-8x+12\)
\(\Leftrightarrow x^2+8x-20=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=10\end{matrix}\right.\)
1) điều kiện xác định : \(x\notin\left\{-1;-3;-5;-7\right\}\)
ta có : \(\dfrac{1}{x^2+4x+3}+\dfrac{1}{x^2+8x+15}+\dfrac{1}{x^2+12x+35}=\dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+7\right)}=\dfrac{1}{9}\) \(\Leftrightarrow\dfrac{\left(x+5\right)\left(x+7\right)+\left(x+1\right)\left(x+7\right)+\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}=\dfrac{1}{9}\)\(\Leftrightarrow\dfrac{x^2+12x+35+x^2+8x+7+x^2+4x+3}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}=\dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{3x^2+24x+45}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}=\dfrac{1}{9}\)
\(\Leftrightarrow9\left(3x^2+24x+45\right)=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)\)
\(\Leftrightarrow27\left(x^2+8x+15\right)=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)\)
\(\Leftrightarrow27\left(x+3\right)\left(x+5\right)=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)\)
\(\Leftrightarrow27=\left(x+1\right)\left(x+7\right)\) ( vì điều kiện xác định )
\(\Leftrightarrow27=x^2+8x+7\Leftrightarrow x^2+8x-20=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+10\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+10=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-10\end{matrix}\right.\left(tmđk\right)\)
vậy \(x=2\) hoặc \(x=-10\)
a: \(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
=>\(\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
=>(x+4)(x+7)=54
=>x^2+11x+28-54=0
=>(x+13)(x-2)=0
=>x=-13 hoặc x=2
b: \(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-...+\dfrac{1}{x+4}-\dfrac{1}{x+5}=\dfrac{1}{3}\)
=>\(\dfrac{x+5-x-1}{\left(x+5\right)\left(x+1\right)}=\dfrac{1}{3}\)
=>x^2+6x+5=12
=>x^2+6x-7=0
=>(x+7)(x-1)=0
=>x=-7 hoặc x=1
a.
\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)
\(\Leftrightarrow x\left(x+1\right).\left(x-1\right)\left(x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)
Đặt \(a=x^2+x-1\) , ta có pt:
\(\left(a+1\right)\left(a-1\right)-24=0\)
\(\Leftrightarrow a^2-1-24=0\)
\(\Leftrightarrow a^2-25=0\)
\(\Leftrightarrow\left(a-5\right)\left(a+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=5\\a=-5\end{matrix}\right.\)
*Với a = 5 ta được:
\(x^2+x-1=5\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2+3x-2x-6=0\)
\(\Leftrightarrow\left(x^2+3x\right)-\left(2x+6\right)=0\)
\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
*Với a = -5 ta được:
\(x^2+x-1=-5\)
\(\Leftrightarrow x^2+x+4=0\)
\(\Leftrightarrow x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{15}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}=0\) ( loại)
Vậy pt có tập nghiệm là: \(s=\left\{-3;2\right\}\)
c)(ĐKXĐ: x khác 30;29)
\(\Leftrightarrow\dfrac{x-29}{30}-1+\dfrac{x-30}{29}-1=\dfrac{29}{x-30}-1+\dfrac{30}{x-29}-1\)
\(\Leftrightarrow\dfrac{x-59}{30}+\dfrac{x-59}{29}=\dfrac{x-59}{30-x}+\dfrac{x-59}{29-x}\)
\(\Leftrightarrow x=59\)(tm) or \(\dfrac{1}{30}+\dfrac{1}{29}-\dfrac{1}{30-x}-\dfrac{1}{29-x}=0\)
\(\Leftrightarrow\dfrac{-x}{30\left(30-x\right)}+\dfrac{-x}{29\left(29-x\right)}=0\)
\(\Leftrightarrow x=0\)(tm) or \(\dfrac{1}{30\left(30-x\right)}+\dfrac{1}{29\left(29-x\right)}=0\)
\(\Leftrightarrow1741-59x=0\)
\(\Leftrightarrow x=\dfrac{1741}{59}\left(tm\right)\)
Vậy S={0;\(\dfrac{1741}{59}\);59}
a/ \(\dfrac{1}{x^2+x}+\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}\)
\(=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+4}\)
Vậy..
b/ \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}\)
\(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}\)
\(=\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}\)
\(=\dfrac{1}{x+1}-\dfrac{1}{x+5}\)
Vậy..
1.
\(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\left(ĐKXĐ:x\ne1\right)\\ \Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\\ \Leftrightarrow21x-9=2x-2\\ \Leftrightarrow19x=7\\ \Leftrightarrow x=\dfrac{7}{19}\left(TMĐK\right)\)
2.
\(\dfrac{5x-1}{3x+2}=\dfrac{5x-7}{3x-1}\left(ĐKXĐ:x\ne-\dfrac{2}{3};x\ne\dfrac{1}{3}\right)\\ \Leftrightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\\ \Leftrightarrow15x^2-5x-3x+1=15x^2+10x-21x-14\\ \Leftrightarrow-8x+1=-11x-14\\ \Leftrightarrow3x=-15\\ \Leftrightarrow x=-5\left(TMĐK\right)\)
3.
\(\dfrac{1-x}{x+1}+3=\dfrac{2x+3}{x+1}\left(ĐKXĐ:x\ne-1\right)\\ \Leftrightarrow\left(\dfrac{1-x}{x+1}+3\right)\left(x+1\right)=2x+3\\ \Leftrightarrow\dfrac{1-x+3\left(x+1\right)}{x+1}.\left(x+1\right)=2x+3\\ \Leftrightarrow\dfrac{4+2x}{x+1}\left(x+1\right)=2x+3\\ \Leftrightarrow4+2x=2x+3\\ \Leftrightarrow4=3\)
Vô nghiệm.
24:
\(\Leftrightarrow\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
\(\Leftrightarrow\left(x+2\right)\left(x+6\right)=8\left(x+6\right)-8\left(x+2\right)\)
\(\Leftrightarrow x^2+8x+12=8x+48-8x-16=32\)
=>(x+10)(x-2)=0
=>x=-10 hoặc x=2
25: \(\Leftrightarrow\dfrac{\left(x+1\right)^2+1}{x+1}+\dfrac{\left(x+4\right)^2+4}{x+4}=\dfrac{\left(x+2\right)^2+2}{x+2}+\dfrac{\left(x+3\right)^2+3}{x+3}\)
\(\Leftrightarrow x+1+\dfrac{1}{x+1}+x+4+\dfrac{4}{x+4}=x+2+\dfrac{2}{x+2}+x+3+\dfrac{3}{x+3}\)
\(\Leftrightarrow\dfrac{1}{x+1}+\dfrac{4}{x+4}=\dfrac{2}{x+2}+\dfrac{3}{x+3}\)
\(\Leftrightarrow x+5=0\)
hay x=-5
b) \(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}=\dfrac{1}{18}\\< =>\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}=\dfrac{1}{18}\\ < =>\dfrac{1}{x+1}-\dfrac{1}{x+5}=\dfrac{1}{18}\\ quyđồngmẫuvàkhửmẫu\\ x^{2^{ }}+6x-27=0\\ giảipttìmđược:x=3;x=-9\)
a) \(\frac{x-2015}{1}+\frac{x-2014}{2}+\frac{x-2013}{3}+...+\frac{x-1}{2015}+\frac{x}{2016}=0\\ \Leftrightarrow\frac{x-2015}{1}-1+\frac{x-2014}{2}-1+...+\frac{x-1}{2015}-1+\frac{x}{2016}-1=-2016\)
\(\Leftrightarrow\frac{\left(x-2016\right).1}{1}+\frac{\left(x-2016\right).1}{2}+\frac{\left(x-2016\right).1}{3}+...+\frac{\left(x-2016\right).1}{2015}+\frac{\left(x-2016\right).1}{2016}=-2016\)
\(\Leftrightarrow\left(x-2016\right)\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}\right)=-2016\)
tới đây mình chịu. mình nghĩ là phương trình bạn cho là bằng 2016 chứ, như thế giải mới được, còn như này thì mình bó tay
b)
\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}=\frac{1}{8}\\ \Leftrightarrow\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}=\frac{1}{8}\\ \Leftrightarrow\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+6}=\frac{1}{8}\\ \Leftrightarrow\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{4}{32}\\ \Rightarrow\left(x+2\right)\left(x+6\right)=32\)
\(\Leftrightarrow x^2+8x+12-32=0\\ \Leftrightarrow x^2+8x-20=0\\ \Leftrightarrow\left(x+10\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x+10=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-10\\x=2\end{matrix}\right.\)
vậy phương trình có tập nghiệm là S={-10;2}
Câu 2:
ĐKXĐ: \(\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Rightarrow \left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)
\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)
\(\left(1\right):\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)
\(\Leftrightarrow 12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)
\(\Leftrightarrow 12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)
\(\Leftrightarrow12x+12=0\\ \Leftrightarrow12x=-12\\ \Leftrightarrow x=-1\left(TM\right)\)
Vậy \(S=\left\{-1\right\}\)
⇔ \(\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)
⇔ \(\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
⇔ \(\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
⇔ \(\dfrac{x+6-x-2}{\left(x+2\right)\left(x+6\right)}=\dfrac{1}{8}\)
⇔ \(\dfrac{4}{x^2+8x+12}=\dfrac{1}{8}\)
⇔ \(x^2+8x+12=32\)
⇔ \(x^2+8x-20=0\)
⇔ \(\left(x-2\right)\left(x+10\right)=0\)
⇔ \(\left[{}\begin{matrix}x=2\\x=-10\end{matrix}\right.\)
Sửa lại đề nha:
\(\dfrac{1}{x^2+9x+12}thành\dfrac{1}{x^2+9x+20}\)