K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2020

\(\frac{sinx}{x}\) = 1/2 tương đương sinx= 1/2 *x tương đương x= arcsin1/2x + k2pi hoặc x= pi trừ arcsin 1/2+ k2pi.

NV
19 tháng 9 2020

a.

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\\x=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

b.

\(\Leftrightarrow sinx=sin\left(\frac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

c.

\(\Leftrightarrow cosx=cos\left(\frac{\pi}{4}\right)\)

\(\Leftrightarrow x=\pm\frac{\pi}{4}+k2\pi\)

d.

\(\Leftrightarrow cosx=cos\left(\frac{3\pi}{4}\right)\)

\(\Leftrightarrow x=\pm\frac{3\pi}{4}+k2\pi\)

e.

\(\Leftrightarrow sinx=sin\left(-\frac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

20 tháng 9 2020

cho mk hỏi câu c có thể gộp 2 họp nghiệm lại được ko v

NV
16 tháng 7 2020

c/

\(\Leftrightarrow cos^3\left(x-\frac{\pi}{3}\right)=\frac{1}{8}\)

\(\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=cos\left(\frac{\pi}{3}\right)\)

\(\Rightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{\pi}{3}+k2\pi\\x-\frac{\pi}{3}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=k2\pi\end{matrix}\right.\)

NV
16 tháng 7 2020

a/

\(\Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)=sin\left(x+\frac{\pi}{3}\right)=cos\left(\frac{\pi}{6}-x\right)\)

\(\Rightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{6}-x+k2\pi\\2x-\frac{\pi}{3}=x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=\frac{\pi}{6}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{6}+\frac{k2\pi}{3}\)

b/

\(\Rightarrow sin^4x-cos^4x=sin\left(x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=sin\left(x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow-cos2x=sin\left(x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow cos2x=-sin\left(x+\frac{\pi}{3}\right)=cos\left(x+\frac{5\pi}{6}\right)\)

\(\Rightarrow\left[{}\begin{matrix}2x=x+\frac{5\pi}{6}+k2\pi\\2x=-x-\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{5\pi}{6}+k2\pi\\x=-\frac{5\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
19 tháng 7 2019

Lời giải:
\(\sin ^2(\frac{\pi}{6}-x)=\frac{1}{4}\)

\(\Rightarrow \left[\begin{matrix} \sin (\frac{\pi}{6}-x)=\frac{1}{2}\\ \sin (\frac{\pi}{6}-x)=\frac{-1}{2}\end{matrix}\right.\)

Nếu \(\sin (\frac{\pi}{6}-x)=\frac{1}{2}\Rightarrow \left[\begin{matrix} \frac{\pi}{6}-x=\frac{\pi}{6}-2k\pi \\ \frac{\pi}{6}-x=\frac{5\pi}{6}-2k\pi \end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=2k\pi \\ x=2k\pi-\frac{2}{3}\pi \end{matrix}\right.\) với $k$ nguyên.

Nếu \(\sin (\frac{\pi}{6}-x)=\frac{-1}{2}\Rightarrow \left[\begin{matrix} \frac{\pi}{6}-x=\frac{-\pi}{6}-2k\pi \\ \frac{\pi}{6}-x=\frac{7\pi}{6}-2k\pi \end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=\frac{\pi}{3}+2k\pi \\ x=(2k-1)\pi\end{matrix}\right.\) với $k$ nguyên.

Gộp cả 2TH trên lại ta suy ra \(x=n\pi \) hoặc \(x=n\pi+\frac{\pi}{3}\) với $n$ là số nguyên bất kỳ.

Mình vội nên suy nghĩ có 5 phút nếu sai sót gì mong bạn thông cảm

 

29 tháng 8 2020

tại sao lại phải là \(\frac{2}{\sqrt{13}}\) vậy b

NV
29 tháng 8 2020

Pt lượng giác cấp 1 với sin và cos dạng:

\(a.sinx+b.cosx=c\)

Cách giải: chia 2 vế cho \(\sqrt{a^2+b^2}\) ...

(theo sách giáo khoa cơ bản)

NV
5 tháng 9 2020

a/

Đặt \(cosx=t\Rightarrow0< t\le1\)

\(\Rightarrow t^2-2mt+4\left(m-1\right)=0\)

\(\Leftrightarrow t^2-4-2m\left(t-2\right)=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+2-2m\right)=0\)

\(\Leftrightarrow t=2m-2\)

\(\Rightarrow0< 2m-2\le1\Rightarrow1< m\le\frac{3}{2}\)

b.

\(x\in\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\Rightarrow\frac{x}{2}\in\left(-\frac{\pi}{4};\frac{\pi}{4}\right)\)

Đặt \(sin\frac{x}{2}=t\Rightarrow-\frac{\sqrt{2}}{2}< t< \frac{\sqrt{2}}{2}\)

\(\Rightarrow4t^2+2t+m-2=0\Leftrightarrow4t^2+2t-2=-m\)

Xét \(f\left(t\right)=4t^2+2t-2\) trên \(\left(-\frac{\sqrt{2}}{2};\frac{\sqrt{2}}{2}\right)\)

\(f\left(-\frac{\sqrt{2}}{2}\right)=-\sqrt{2}\) ; \(f\left(\frac{\sqrt{2}}{2}\right)=\sqrt{2}\) ; \(f\left(-\frac{1}{4}\right)=-\frac{9}{4}\)

\(\Rightarrow-\frac{9}{4}\le f\left(t\right)< \sqrt{2}\Rightarrow-\frac{9}{4}\le-m< \sqrt{2}\)

\(\Rightarrow-\sqrt{2}< m\le\frac{9}{4}\)

NV
29 tháng 9 2020

ĐKXĐ: \(x\ne-\frac{\pi}{4}+k\pi\)

\(\Leftrightarrow\frac{\left(1-sin^2x\right)\left(cosx-1\right)}{sinx+cosx}=2\left(1+sinx\right)\)

\(\Leftrightarrow\frac{\left(1+sinx\right)\left(1-sinx\right)\left(cosx-1\right)}{sinx+cosx}=2\left(1+sinx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\Rightarrow x=-\frac{\pi}{2}+k2\pi\\\frac{\left(1-sinx\right)\left(cosx-1\right)}{sinx+cosx}=2\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow cosx-1-sinx.cosx+sinx=2sinx+2cosx\)

\(\Leftrightarrow sinx+cosx+sinx.cosx+1=0\)

\(\Leftrightarrow\left(sinx+1\right)\left(cosx+1\right)=0\)

\(\Leftrightarrow...\)

28 tháng 8 2016

pt <=> 1+cos2x + cos3x + cosx = 0

<=> 2cos²x + 2cos2x.cosx = 0 

<=> 2cosx.(cos2x + cosx) = 0 
<=> 4cosx.cos(3x/2).cos(x/2) = 0 <=> 
[cosx = 0 
[cos(3x/2) = 0 (tập nghiệm cos3x/2 = 0 chứa tập nghiệm cosx/2 = 0) 
<=> 
[x = pi/2 + kpi 
[3x/2 = pi/2 + kpi 
<=> 
[x = pi/2 + kpi 
[x = pi/3 + 2kpi/3 (k thuộc Z) 

28 tháng 8 2016

sin^2 x + sin^2 2x + sin^2 3x + sin^2 4x = 
[1-cos(2x)]/2+ [1-cos(4x)]/2+[1-cos(6x)]/2+[1-cos(8x)]/... = 
2- [ cos(2x)+cos(4x)+cos(6x)+cos(8x)]/2 = 
2- 1/2· [ cos(2x)+cos(8x)]+cos(4x)+cos(6x)]= 
2- 1/2· [ 2·cos(-3x)·cos(5x) + 2· cos(-x)·cos(5x)]= 
2- cos(5x)· [cos(3x)+cosx] = 
2- cos(5x)· 2·cos(2x)·cosx = 
2- 2·cosx·cos(2x)·cos(5x)= 2 <--> 

*cosx=0 --> x= pi/2+ k·pi with k thuộc Z or 
*cos(2x)=0 --> x= pi/4 + k·pi/2 with k thuộc Z or 
* cos(5x)=0 --> x= pi/10+ k·pi/5 with k thuộc Z