K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

???????

4 tháng 4 2017

ko hiểu

Câu 2: 

a: Thay x=-2 vào pt, ta được:

-4-m=1-(-2)=1+2=1

=>-m=5

hay m=-5

b: Thay x=-2 vào pt, ta được:

-2-k=-6+1=-5

=>k=3

20 tháng 3 2018

bài 1 câu a,b tự làm nhé " thay k=-3 vào là ra 

bài 1 câu c "

\(4x^2-25+k^2+4kx=0.\)

thay x=-2 vào ta được

\(16-25+k^2+-8k=0\)

\(-9+k^2-8k=0\Leftrightarrow k^2+k-9k-9=0\)

\(k\left(k+1\right)-9\left(k+1\right)=0\)

\(\left(k+1\right)\left(k-9\right)=0\)

vậy k=1 , 9 thì pt nhận x=-2

bài 2 xác đinh m ? đề ko có mờ đề phải là xác định a nếu là xác định a thì thay x=1 vào rồi tính là ra 

bài 3 cũng éo hiểu xác định a ? a ở đâu

1 là phải xác đinh m , nếu là xác đinh m thì thay x=-2 vào rồi làm

. kết luận của chúa Pain đề như ###

15 tháng 11 2016

Phân tích đa thức thành nhân tử , ta đươc :

\(x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x^2+x+6\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x_1=-2\\x_2=1\end{array}\right.;x^2+x+6=\left(x+\frac{1}{2}\right)^2+5\frac{3}{4}\ne0\forall x.\)

Vậy pt đã cho các nghiệm : \(x_1=-2;x_2=1.\)

13 tháng 3 2016

bai 1

1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0

<=>(2x)^2-5^2=0

<=>(2x+5)*(2x-5)=0

<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự

a) \(x^4-2x^3+4x^2-3x+2=0\)

\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x+2=0\)

\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+3\left(x^2-x+\frac{1}{4}\right)+\frac{5}{4}=0\)

\(\Leftrightarrow\left(x^2-x\right)^2=3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}=0\)

 Vì (x2 -x )\(\ge0\)với mọi x

\(\Rightarrow\left(x^2-x\right)^2+3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}>0\)với mọi x

=> Phương trình trên vô nghiệm - đpcm

b) Ta có

x6+x5+x4+x3+x2+x+1=0

Nhận thấy x = 1 không là nghiệm của phương trình. Nhân cả hai vế của phương trình với x-1 được :

(x−1)(x6+x5+x4+x3+x2+x+1)=0

⇔x7−1=0

⇔x7=1

⇔x=1

(vô lí)

Điều vô lí chứng tỏ phương trình vô nghiệm.

14 tháng 6 2017

4x2 - 25 + k2 + 4kx = 0

<=> ( 2x + k )2 - 25 = 0

a) Với k = 0 => ( 2x + 0 )2 - 25 = 0

4x2 - 25 = 0

( 2x - 5).(2x+5) = 0

=> \(\left[{}\begin{matrix}2x-5=0\\2x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2,5\\x=-2,5\end{matrix}\right.\)

b) Với k = -3 => ( 2x-3)2 - 25 =0

( 2x-3-5 ). ( 2x-3+5) = 0

( 2x-8). (2x+2) =0

=> \(\left[{}\begin{matrix}2x-8=0\\2x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)

c) Để pt nhận x= -2 làm nghiệm

=> 4. (-2)2 - 25 + k2 +4k . (-2) =0

4 . 4 - 25 + k2 - 8k = 0

k2 -8k - 9 = 0

( k -9 ). ( k + 1 ) =0

=> \(\left[{}\begin{matrix}k-9=0\\k+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}k=9\\k=-1\end{matrix}\right.\)

Vậy nếu k=9 hoặc k=-1 thì pt nhận x=-2 làm nghiệm

14 tháng 6 2017

a, Thay k=0 vào phương trình, ta có:

\(4x^2-25=0\)

\(4x^2=25\Rightarrow x=\sqrt{\dfrac{25}{4}}=\dfrac{5}{2}.\)

Vậy nghiệm của PT là \(\dfrac{5}{2}\)khi k=0.

b, Thay k=-3 vào phương trình, ta có:

\(4x^2-25+9-12x=0\)

\(4x^2-12x=16\)

\(x^2-3x=4\)

\(x^2-3x-4=0\)

\(x^2-4x+\left(x-4\right)=0\)

\(\left(x-4\right)\left(x+1\right)=0\)

\(\Rightarrow x-4=0\) hoặc \(x+1=0\)

\(\Rightarrow x=4\) hoặc \(x=-1\)

Vậy phương trình có hai nghiệm là 4 và -1 khi k=-3.

c, Cho : \(16-25+k^2-8k=0\)

\(k^2-8k-9=0\)

\(k^2-9k+\left(k-9\right)=0\)

\(\left(k-9\right)\left(k+1\right)=0\)

\(\Rightarrow k-9=0\) hoặc \(k+1=0\)

\(\Rightarrow k=9\) hoặc \(k=-1\)

Vậy các giá trị của k là 9 và -1 để pt nhận x=-2 làm nghiệm.

15 tháng 11 2016

a ) \(\left(2x-1\right)\left(x-3\right)\left(x+7\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+1=0\\x-3=0\\x+7=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=3\\x=-7\end{array}\right.\)

Vậy phương trình đã cho các nghiệm \(x=-\frac{1}{2};x=3;x=-7.\)

b ) \(x^2-4x+3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x-3=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=3\end{array}\right.\)

Vậy phương trình đã cho các nghiệm \(x=1,x=3\).