Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ - Với \(x>\frac{1}{4}\) PT vô nghiêm
- Với \(x\le\frac{1}{4}\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(1-4x\right)^2\)
\(\Leftrightarrow\left(x^2+4x-2\right)\left(x^2-4x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+4x-2=0\\x^2-4x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2+\sqrt{6}\left(l\right)\\x=-2-\sqrt{6}\\x=4\left(l\right)\\x=0\end{matrix}\right.\)
2.
- Với \(x\ge-\frac{1}{4}\Leftrightarrow4x+1=x^2+2x-4\)
\(\Leftrightarrow x^2-2x-5=0\Rightarrow\left[{}\begin{matrix}x=1+\sqrt{6}\\x=1-\sqrt{6}\left(l\right)\end{matrix}\right.\)
- Với \(x< -\frac{1}{4}\)
\(\Leftrightarrow-4x-1=x^2+2x-4\)
\(\Leftrightarrow x^2+6x-3=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3+2\sqrt{3}\left(l\right)\\x=-3-2\sqrt{3}\end{matrix}\right.\)
3.
- Với \(x\ge\frac{5}{3}\)
\(\Leftrightarrow3x-5=2x^2+x-3\)
\(\Leftrightarrow2x^2-2x+2=0\left(vn\right)\)
- Với \(x< \frac{5}{3}\)
\(\Leftrightarrow5-3x=2x^2+x-3\)
\(\Leftrightarrow2x^2+4x-8=0\Rightarrow\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\)
4. Do hai vế của pt đều không âm, bình phương 2 vế:
\(\Leftrightarrow\left(x^2-2x+8\right)^2=\left(x^2-1\right)^2\)
\(\Leftrightarrow\left(x^2-2x+8\right)^2-\left(x^2-1\right)^2=0\)
\(\Leftrightarrow\left(2x^2-2x+7\right)\left(-2x+9\right)=0\)
\(\Leftrightarrow-2x+9=0\Rightarrow x=\frac{9}{2}\)
1) x-\(\sqrt{2x-5}\)=4
ĐK: \(\left\{{}\begin{matrix}2x-5\ge0\\x\ge4\end{matrix}\right.\)=> x\(\ge\)4
x-\(\sqrt{2x-5}\)=4<=> x-4=\(\sqrt{2x-5}\)
bình phương hai vế:
\(x^2-8x+16\) =2x-5
<=>\(x^2\) -10x+21=0 <=>\(\left[{}\begin{matrix}x=7\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)
2) \(2x^2-3-5\sqrt{2x^2+3}=0\)(*)
ĐK:\(2x^2-3>0\Leftrightarrow x^2>\dfrac{3}{2}\)
<=>\(\left[{}\begin{matrix}x>\sqrt{\dfrac{3}{2}}\\x< -\sqrt{\dfrac{3}{2}}\end{matrix}\right.\)
(*)<=>
a)Đặt \(\sqrt[3]{2x-1}=a\Rightarrow a^3+1=2x\left(1\right)\)
Phương trình trở thành: \(x^3+1=2a\left(2\right)\)
Trừ theo vế (1) và (2):
a3-x3=2(x-a)<=>(a-x)(a2+ax+x2+2)=0<=>a=x
\(\Leftrightarrow x=\sqrt[3]{2x-1}\Leftrightarrow x^3-2x+1=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{-1-\sqrt{5}}{2}\\x=\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)Vậy phương trình có tập nghiệm S=\(\left\{1;\frac{-1+\sqrt{5}}{2};\frac{-1-\sqrt{5}}{2}\right\}\)
b)ĐKXĐ:\(x\in R\)
pt\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3x+1\le0\\\left(x^2-3x+1\right)^2=\frac{1}{3}\left(x^4+4x^2+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{3-\sqrt{5}}{2}\le x\le\frac{3+\sqrt{5}}{2}\\2x^4-18x^3+29x^2-18x+2=0\left(1\right)\end{matrix}\right.\)
Xét x=0 ko là nghiệm của pt(loại)
x khác 0.Khi đó ta chia cả hai vế của (1) cho x2 ta có:\(2x^2-18x+29-\frac{18}{x}+\frac{2}{x^2}=0\Leftrightarrow2\left(x+\frac{1}{x}\right)^2-4-18\left(x+\frac{1}{x}\right)+29=0\Leftrightarrow2\left(x+\frac{1}{x}\right)^2-18\left(x+\frac{1}{x}\right)+25=0\)
Khi đó ta sẽ tìm được các nghiệm của pt
a: \(\Leftrightarrow\dfrac{x\left(x^2-1\right)+x-1}{\left(x+1\right)\left(x-1\right)}=\dfrac{\left(2x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
=>\(x^3-x+x-1=2x^2+x-1\)
=>x^3-2x^2-x=0
=>x(x^2-2x-1)=0
=>x=0 hoặc \(x\in\left\{1+\sqrt{2};1-\sqrt{2}\right\}\)
c: =>(x-1)(x-2) căn 2x-3=0
=>\(x\in\left\{\dfrac{3}{2};2\right\}\)
a) \(x+\sqrt{3x^2+1}=m\)
<=> \(\sqrt{3x^2+1}=m-x\)
ta thẩ : \(\sqrt{3x^2+1}\ge0\)=> \(m-x\ge0\)
<=> \(m\ge x\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)-m-1=0\)
\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)-m-1=0\)
Đặt \(x^2+6x+7=\left(x+3\right)^2-2=t\ge-2\) ta được:
\(\left(t-2\right)\left(t+1\right)-m-1=0\)
\(\Leftrightarrow t^2-t-m-3=0\) (1)
a/ Bạn tự giải (thay số bấm máy ez)
b/ Pt có nghiệm thỏa \(x^2+6x+7\le0\) khi và chỉ khi (1) có nghiệm \(t\in\left[-2;0\right]\)
Ta có: \(\left(1\right)\Leftrightarrow t^2-t-3=m\)
Xét hàm \(f\left(t\right)=t^2-t-3\) trên \(\left[-2;0\right]\)
\(a=1>0;\) \(-\frac{b}{2a}=\frac{1}{2}>0\Rightarrow f\left(t\right)\) nghịch biến trên \(\left[-2;0\right]\)
\(\Rightarrow f\left(0\right)\le f\left(t\right)\le f\left(-2\right)\Rightarrow-3\le f\left(t\right)\le3\)
\(\Rightarrow-3\le m\le3\)
TH1: \(\left|x+1\right|=x+1\) khi \(x\ge-1\)
\(\Rightarrow\)\(3x^2+2\left(x+1\right)=3\)
\(\Leftrightarrow3x^2+2x+2-3=0\)
\(\Leftrightarrow3x^2+2x-1=0\)
\(\Leftrightarrow3x^2+3x-x-1=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)
TH2: \(\left|x+1\right|=-x-1\) khi \(x\le-1\)
\(\Rightarrow3x^2+2\left(-x-1\right)=3\)
\(\Leftrightarrow3x^2-2x-2-3=0\)
\(\Leftrightarrow3x^2-2x-5=0\)
\(\Leftrightarrow3x^2+3x-5x-5=0\)
\(\Leftrightarrow3x\left(x+1\right)-5\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\3x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=\dfrac{5}{3}\end{matrix}\right.\)
Vậy............................................
=.= hok tốt!!
cảm ơn nha