Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) \(x^2-7x+6=0\)
\(\Leftrightarrow x^2-6x-x+6=0\)
\(\Leftrightarrow x\left(x-6\right)-\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)
S=\(\left\{6;1\right\}\)
\(\)
a. (3x-4)2=9(x-1)(x+1)
<=> 9x2-24x+16=9x2-9
<=> -24x=-25
<=> x=\(\dfrac{25}{24}\)
Vậy S=\(\left\{\dfrac{25}{24}\right\}\)
b. (4x-5)2-4(x-2)2=0
<=> (4x-5)2-(2x-4)2=0
<=> (4x-5-2x+4)(4x-5+2x-4)=0
<=> (2x-1)(6x-9)=0
<=> \(\left[{}\begin{matrix}2x-1=0\\6x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy S=\(\left\{\dfrac{1}{2};\dfrac{3}{2}\right\}\)
c. |x2-x|= -2x
Ta có: |x2-x|=x2-x khi x2-x\(\ge0\) hay x\(\ge1\)
=> x2-x= -2x
<=> x2-x+2x=0
<=> x2+x=0
<=> x(x+1)=0
<=> \(\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) (không thỏa mãn điều kiện x\(\ge1\))
Lại có: |x2-x|= x-x2 khi x2-x<0 hay x<1
=> x-x2= -2x
<=> x-x2+2x=0
<=> 3x-x2=0
<=> x(3-x)=0
x=0 (thỏa mãn điều kiện x<1)
hoặc: 3-x=0<=> x=3 (không thỏa mãn điều kiện x<1)
Vậy S=\(\left\{0\right\}\)
d. \(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)
ĐKXĐ: \(x\ne\pm3\)
Ta có:\(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)
<=> \(\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\dfrac{48x^3}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}\)
=> x2+6x+9-48x3=x2-6x+9
<=> 12x-48x3=0
<=> 12x(1-4x2)=0
<=> 12x(1-2x)(1+2x)=0
<=> \(\left[{}\begin{matrix}x=0\\1-2x=0\\1+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-0,5\end{matrix}\right.\) (thỏa mãn ĐKXĐ)
Vậy S=\(\left\{0;\pm0,5\right\}\)
a ) ( 3x - 4 )2 = 9 (x-1)(x+1)
\(\Leftrightarrow\) 9x2 - 24x + 16 = 9 ( x2 - 1 )
\(\Leftrightarrow\) 9x2 - 24x + 16 = 9x2 - 9
\(\Leftrightarrow\) 9x2 - 24x - 9x2 = - 9 - 16
\(\Leftrightarrow\) -24x = -24
\(\Leftrightarrow\) x = 1
Vậy phương trình có nghiệm x = 1 .
\(a,\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)
\(\Leftrightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(3x-2-x+1\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x+1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\dfrac{2}{3};-1;\dfrac{1}{2}\right\}\)
\(b,\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow\left(1-x\right)^2-\left(1-x^2\right)=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow\left(1-x\right)^2-\left(1-x\right)\left(1+x\right)-\left(1-x\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(1-x\right)\left(1-x-1-x-x-3\right)=0\)
\(\Leftrightarrow\left(1-x\right)\left(-3x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}1-x=0\\-3x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;-1\right\}\)
\(c,\left(x^2-1\right)\left(x+2\right)\left(x-3\right)=\left(x-1\right)\left(x^2-4\right)\left(x+5\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\-5x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=\dfrac{7}{5}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;-2;\dfrac{7}{5}\right\}\)
\(d,x^4+x^3+x+1=0\)
\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^3+1=0\end{matrix}\right.\)
\(\Leftrightarrow x=-1\)
Vậy phương trình có nghiệm duy nhất x = -1
\(e,x^3-7x+6=0\)
\(\Leftrightarrow x^3-4x-3x+6=0\)
\(\Leftrightarrow x\left(x^2-4\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x-x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\\x=1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;2;-3\right\}\)
\(f,x^4-4x^3+12x-9=0\)
\(\Leftrightarrow\left(x^4-9\right)-\left(4x^3-12x\right)=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)-4x\left(x^2+3\right)=0\)
\(\Leftrightarrow\left(x^2+3\right)\left(x^2-3-4x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+3>0\forall x\\x^2-4x-3>0\forall x\end{matrix}\right.\)
Vậy phương trình vô nghiệm
\(g,x^5-5x^3+4x=0\)
\(\Leftrightarrow x\left(x^4-5x^2+4\right)=0\)
\(\Leftrightarrow x\left(x^4-4x^2-x^2+4\right)=0\)
\(\Leftrightarrow x\left(x^2-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\\x-1=0\\x+1=0\end{matrix}\right.\) hoặc x = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=1\\x=-1\end{matrix}\right.\) hoặc x =0
Vậy tập nghiệm của pt \(S=\left\{0;1;-1;2;-2\right\}\)
\(h,x^4-4x^3+3x^2+4x-4=0\)
\(\Leftrightarrow x^4-4x^3+4x^2-x^2+4x-4=0\)
\(\Leftrightarrow\left(x^4-x^2\right)-\left(4x^3-4x\right)+\left(4x^2-4\right)=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4x\left(x^2-1\right)+4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\end{matrix}\right.\)
Vậy tập nghiệm của pt là \(S=\left\{1;-1;2\right\}\)
Tatsuya Yuuki( Team Megin Kawakuchi)
người ta đã dăng câu hỏi lên để mn giúp vì bán đấy k làm đc, mà mày tự nhiên nhảy vào bảo tự làm. Nếu mày đăng câu hỏi lên mà mn bảo m tự làm thì mày cảm thấy thế nào
a/ (x+5)(3x+2)^2=x^2(x+5)
(x+5)(9x^2+12x+4)=x^2(x+5)
9x^3+12x^2+4x+45x^2+60x+20=x^3+5x^2
9x^3-x^3+12x^2+45x^2-5x^2+4x+60x=-20
8x^3+52x^2+64x+20=0
........................
a) \(\left(y-1\right)^2=9\)
\(\Rightarrow\left(y-1\right)^2=3^2=\left(-3\right)^2\)
\(\Rightarrow x-1=3\Rightarrow x=4\)
\(\Rightarrow x-1=-3\Rightarrow x=-2\)
Vậy: \(x=4\) hoặc \(-2\)