K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2020

Viết đề mà ko ai đọc được vậy :v

a) \(3x^2+2x+3=\left(3x+1\right)\sqrt{x^2+3}\)

\(\Leftrightarrow3x^2+2x+3-3x\sqrt{x^2+3}-\sqrt{x^2+3}=0\)

\(\Leftrightarrow x^2+3-x\sqrt{x^2+3}-\sqrt{x^2+3}-2x\sqrt{x^2+3}+2x^2+2x=0\)

\(\Leftrightarrow\sqrt{x^2+3}\cdot\left(\sqrt{x^2+3}-x-1\right)-2x\cdot\left(\sqrt{x^2+3}-x-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x^2+3}-x-1\right)\left(\sqrt{x^2+3}-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=x+1\left(x\ge-1\right)\\\sqrt{x^2+3}=2x\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)\(\Leftrightarrow x=1\) ( thỏa mãn )

Vậy...

4 tháng 2 2020

\(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\) (1)

<=>\(\left(4x-1\right)\left[\sqrt{x^2+1}-\left(3-x\right)\right]=6x^2-11x+4\)

Xét \(\sqrt{x^2+1}+3-x=0\)

<=> \(x^2+1=x^2-6x+9\) <=>\(x=\frac{4}{3}\)(tm phương trình (1))

Xét \(\sqrt{x^2+1}+3-x\ne0\)

pt <=>\(\frac{\left(4x-1\right)\left(x^2+1-x^2+6x-9\right)}{\sqrt{x^2+1}+3-x}=\left(3x-4\right)\left(2x-1\right)\)

<=> \(\frac{\left(4x-1\right)\left(6x-8\right)}{\sqrt{x^2+1}+3-x}-\left(3x-4\right)\left(2x-1\right)=0\)

<=>\(\left(3x-4\right)\left(\frac{2\left(4x-1\right)}{\sqrt{x^2+1}+3-x}-2x+1\right)=0\)

<=>\(\left[{}\begin{matrix}x=\frac{4}{3}\left(tm\right)\\\frac{8x-2}{\sqrt{x^2+1}+3-x}-2x+1=0\left(2\right)\end{matrix}\right.\)

pt (2) <=>\(8x-2=\left(2x-1\right)\sqrt{x^2+1}-2x^2+7x-3\)

<=>\(2x^2+x+1=\left(2x-1\right)\sqrt{x^2+1}\)( đk: \(x\ge\frac{1}{2}\))

=>\(4x^4+x^2+1+4x^3+2x+4x^2=\left(2x-1\right)^2\left(x^2+1\right)\)

<=>\(4x^4+4x^3+5x^2+2x+1=4x^4-4x^3+5x^2-4x+1\)

<=>\(8x^3+6x=0\) <=> \(x\left(8x^2+6\right)=0\) <=>x=0 (do 8x2+6>0) (không t/m (2))

=>(2) vô nghiệm

Vậy pt có tập nghiệm \(S=\left\{\frac{4}{3}\right\}\)

P/s: Hơi dài :)

NV
30 tháng 5 2020

a/ ĐKXĐ \(x\ge1\)

\(\Leftrightarrow2x+1+2\sqrt{x^2+x-2}< 3x+3\)

\(\Leftrightarrow2\sqrt{x^2+x-2}< x+2\)

\(\Leftrightarrow4\left(x^2+x-2\right)< \left(x+2\right)^2\)

\(\Leftrightarrow3x^2< 12\Leftrightarrow x^2< 4\Rightarrow-2< x< 2\)

Vậy nghiệm của BPT là \(1\le x< 2\)

b/ ĐKXĐ: \(x\ge3\)

\(\Leftrightarrow3x-2+2\sqrt{2x^2-5x-3}< 5x-4\)

\(\Leftrightarrow\sqrt{2x^2-5x-3}< x-1\)

\(\Leftrightarrow2x^2-5x-3< x^2-2x+1\)

\(\Leftrightarrow x^2-3x-4< 0\Rightarrow-1< x< 4\)

\(\Rightarrow3\le x< 4\)

c/ ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow3x+1+2\sqrt{2x^2+3x-2}\ge6x-1\)

\(\Leftrightarrow2\sqrt{2x^2+3x-2}\ge3x-2\)

- Với \(\frac{1}{2}\le x< \frac{2}{3}\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\ge\frac{2}{3}\) hai vế ko âm

\(\Leftrightarrow4\left(2x^2+3x-2\right)\ge\left(3x-2\right)^2\)

\(\Leftrightarrow x^2-24x+12\le0\) \(\Rightarrow\frac{2}{3}\le x\le12+2\sqrt{33}\)

Nghiệm của BPT là \(\frac{1}{2}\le x\le12+2\sqrt{33}\)

30 tháng 5 2020

Biết là hơi làm phiền nhưng anh có thể giúp em được k ạ :

Câu hỏi của Hàn Thất - Toán lớp 7 | Học trực tuyến

NV
19 tháng 2 2020

ĐKXĐ: \(x\ge-1\)

- Với \(x=-1\) ko phải nghiệm

- Với \(x>-1\)

\(3x+2-2\sqrt{x^2+x+1}+x+1-\sqrt{x+1}=0\)

\(\Leftrightarrow\frac{5x^2+8x}{3x+2+2\sqrt{x^2+x+1}}+\frac{x^2+x}{x+1+\sqrt{x+1}}=0\)

\(\Leftrightarrow x\left(\frac{5x+8}{3x+2+2\sqrt{x^2+x+1}}+\frac{x+1}{x+1+\sqrt{x+1}}\right)=0\)

\(\Leftrightarrow x=0\)

NV
7 tháng 11 2019

a/ ĐKXĐ: \(-\frac{1}{2}\le x\le4\)

\(\sqrt{4-x}=\sqrt{x+1}+\sqrt{2x+1}\)

\(\Leftrightarrow4-x=3x+2+2\sqrt{2x^2+3x+1}\)

\(\Leftrightarrow1-2x=\sqrt{2x^2+3x+1}\) (\(x\le\frac{1}{2}\))

\(\Leftrightarrow4x^2-4x+1=2x^2+3x+1\)

\(\Leftrightarrow2x^2-7x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{7}{2}\left(l\right)\end{matrix}\right.\)

Bài này liên hợp cũng được

b/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{5x+1}^2-\sqrt{5x+1}\left(\sqrt{14x+7}-\sqrt{2x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+1=0\Rightarrow x=-\frac{1}{5}\\\sqrt{5x+1}-\sqrt{14x+7}+\sqrt{2x+3}=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{5x+1}+\sqrt{2x+3}=\sqrt{14x+7}\)

\(\Leftrightarrow7x+4+2\sqrt{10x^2+17x+3}=14x+7\)

\(\Leftrightarrow2\sqrt{10x^2+17x+3}=7x+3\)

\(\Leftrightarrow4\left(10x^2+17x+3\right)=\left(7x+3\right)^2\)

\(\Leftrightarrow...\)

NV
7 tháng 11 2019

c/ ĐKXĐ: \(x\ge\frac{1}{2}\)

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{2-2x}=a\\\sqrt{2x-1}=b\end{matrix}\right.\) ta được:

\(\left\{{}\begin{matrix}a=1-b\\a^3+b^2=1\end{matrix}\right.\) \(\Rightarrow a^3+\left(1-a\right)^2=1\)

\(\Leftrightarrow a^3+a^2-2a=0\)

\(\Leftrightarrow a\left(a^2+a-2\right)=0\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2-2x=0\\2-2x=1\\2-2x=-8\end{matrix}\right.\)

d/ ĐKXĐ: \(x\le\frac{5}{4}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{5-4x}=a\\\sqrt[3]{x+7}=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=3\\a^2+4b^3=33\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=3-b\\a^2+4b^3=33\end{matrix}\right.\)

\(\Leftrightarrow\left(3-b\right)^2+4b^3=33\)

\(\Leftrightarrow4b^3+b^2-6b-24=0\)

\(\Leftrightarrow\left(b-2\right)\left(4b^2+9b+12\right)=0\)

\(\Rightarrow b=2\Rightarrow\sqrt[3]{x+7}=2\Rightarrow x=1\)

NV
19 tháng 2 2020

ĐKXĐ: ...

\(\Leftrightarrow\left(x-1\right)\left(x+3-\sqrt{14x-15}\right)-\sqrt{10x-19}+1=0\)

\(\Leftrightarrow x^2+2x-2-\left(x-1\right)\sqrt{14x-15}-\sqrt{10x-19}=0\)

\(\Leftrightarrow x-\sqrt{10x-19}+\left(x-1\right)\left(x+2\right)-\left(x-1\right)\sqrt{14x-15}=0\)

\(\Leftrightarrow\frac{x^2-10x+19}{x+\sqrt{10x-19}}+\left(x-1\right)\left(\frac{x^2-10x+19}{x+2+\sqrt{14x+15}}\right)=0\)

\(\Leftrightarrow\left(x^2-10x+19\right)\left(\frac{1}{x+\sqrt{10x-19}}+\frac{x-1}{x+2+\sqrt{14x+15}}\right)=0\)

\(\Leftrightarrow x^2-10x+19=0\)

NV
23 tháng 10 2019

a/ ĐKXĐ: ...

\(\Leftrightarrow2\sqrt{\frac{x}{x-1}}-\sqrt{\frac{x-1}{x}}=\frac{2\left(x-1\right)}{x}+3\)

Đặt \(\sqrt{\frac{x-1}{x}}=a>0\)

\(\frac{2}{a}-a=2a^2+3\Leftrightarrow2a^3+a^2+3a-2=0\)

\(\Leftrightarrow\left(2a-1\right)\left(a^2+a+2\right)=0\Leftrightarrow a=\frac{1}{2}\)

\(\Rightarrow\sqrt{\frac{x-1}{x}}=\frac{1}{2}\Leftrightarrow4\left(x-1\right)=x\)

b/ ĐKXĐ: ...

\(\Leftrightarrow3\sqrt{\frac{2x}{x-1}}+4\sqrt{\frac{x-1}{2x}}=\frac{3\left(x-1\right)}{2x}+10\)

Đặt \(\sqrt{\frac{x-1}{2x}}=a>0\)

\(\frac{3}{a}+4a=3a^2+10\Leftrightarrow3a^3-4a^2+10a-3=0\)

\(\Leftrightarrow\left(3a-1\right)\left(a^2-a+3\right)=0\Leftrightarrow a=\frac{1}{3}\)

\(\Leftrightarrow\sqrt{\frac{x-1}{2x}}=\frac{1}{3}\Leftrightarrow9\left(x-1\right)=2x\)

NV
23 tháng 10 2019

c/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{\frac{x}{3-2x}}+5\sqrt{\frac{3-2x}{x}}=\frac{4\left(3-2x\right)}{x}+5\)

Đặt \(\sqrt{\frac{3-2x}{x}}=a>0\)

\(\frac{1}{a}+5a=4a^2+5\Leftrightarrow4a^3-5a^2+5a-1=0\)

\(\Leftrightarrow\left(4a-1\right)\left(a^2-a+1\right)=0\Leftrightarrow a=\frac{1}{4}\)

\(\Leftrightarrow\sqrt{\frac{3-2x}{x}}=\frac{1}{4}\Leftrightarrow16\left(3-2x\right)=x\)

d/ ĐKXĐ: ...

Đặt \(\sqrt{\frac{x-1}{x}}=a>0\)

\(a^2-2a=3\Leftrightarrow a^2-2a-3=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=3\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{\frac{x-1}{x}}=3\Leftrightarrow x-1=9x\)