K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2015

x^3+x^2+x+1=y^3 => y^3 - x^3 = x^2 + x + 1 = (x + 1/2)^2 + 3/4 > 0 
=> y^3 > x^3 (1) 
mặt khác: 
5x^2 +11x+5 =5(x+11/10)^2 +19/20 > 0 
y^3 = x^3 + x^2 + x +1 < x^3 + x^2 + x +1 + 5x^2 + 11x +5 = x^3 +6x^2 +12x +8 = (x + 2)^3 (2) 
(1) và (2) => y^3 = (x + 1)^3 => y = x +1 
=> x^3+x^2 +x +1 = x^3 +3x^2 +3x +1 = y^3 
<=> 2x^2 + 2x =0 
<=> 2x(x+1)=0 
=> x = 0 và y=1 
hoặc x = -1 và y = 0

2 tháng 2 2018

Lời giải:

Ta đưa về bài toán tìm nghiệm nguyên dương.

TH1: x,y∈Z+x,y∈Z+

PT tương đương: (x−y)(4xy−2)=(xy)3−1≥0⇒x≥y(x−y)(4xy−2)=(xy)3−1≥0⇒x≥y

Nếu x=yx=y thì hiển nhiên có xy=1⇒x=y=1xy=1⇒x=y=1.

Xét x>yx>y có 4xy(x−y)−2(x−y)+1=(xy)3⋮xy⇒2(x−y)−1⋮xy4xy(x−y)−2(x−y)+1=(xy)3⋮xy⇒2(x−y)−1⋮xy(1)(1)

Vì 2(x−y)−1≠02(x−y)−1≠0 nên suy ra để có (1)(1) thì 2(x−y)−1≥xy⇔(y−2)(x+2)≤−5<02(x−y)−1≥xy⇔(y−2)(x+2)≤−5<0

⇒y−2<0→y=1⇒y−2<0→y=1. Thay vào PT ban đầu thu được x=y=1x=y=1 (loại vì đang xét x>yx>y)

TH2: x,yx,y đều âm. Ta thay x=−a,y=−bx=−a,y=−b với a,ba,b nguyên dương.

Phương trình trở thành 2a(2b2+1)−2b(2a2+1)+1=(ab)32a(2b2+1)−2b(2a2+1)+1=(ab)3

Đây là dạng PT tương tự TH1, ta cũng thu được a=b=1a=b=1, tức là x=y=−1x=y=−1

TH3: x>0,y<0x>0,y<0. Đặt x=a,y=−bx=a,y=−b (a,ba,b nguyên dương)

PT tương đương: 2b(2a2+1)+2a(2b2+1)−1=(ab)32b(2a2+1)+2a(2b2+1)−1=(ab)3

⇒2(a+b)−1⋮ab⇒2(a+b)−1⋮ab. Vì 2(a+b)−1≠02(a+b)−1≠0 nên 2(a+b)−1≥ab⇒(a−2)(b−2)≤32(a+b)−1≥ab⇒(a−2)(b−2)≤3

Với a,b≥1a,b≥1 dễ dàng suy ra không có bộ nghiệm nào thỏa mãn

TH4: x<0,y>0x<0,y>0. Đặt x=−a,y=bx=−a,y=b (a,ba,b nguyên dương)

PT tương đương 2a(2b2+1)+2b(2a2+1)+1+(ab)3=02a(2b2+1)+2b(2a2+1)+1+(ab)3=0 (vô lý)

Vậy (x,y)=(1;1)(x,y)=(1;1) hoặc (x,y)=(−1;−1)

2 tháng 2 2018

Lời giải:

Ta đưa về bài toán tìm nghiệm nguyên dương.

TH1: x,yZ+x,y∈Z+

PT tương đương: (xy)(4xy2)=(xy)310xy(x−y)(4xy−2)=(xy)3−1≥0⇒x≥y

Nếu x=yx=y thì hiển nhiên có xy=1x=y=1xy=1⇒x=y=1.

Xét x>yx>y có 4xy(xy)2(xy)+1=(xy)3xy2(xy)1xy4xy(x−y)−2(x−y)+1=(xy)3⋮xy⇒2(x−y)−1⋮xy(1)(1)

Vì 2(xy)102(x−y)−1≠0 nên suy ra để có (1)(1) thì 2(xy)1xy(y2)(x+2)5<02(x−y)−1≥xy⇔(y−2)(x+2)≤−5<0

y2<0y=1⇒y−2<0→y=1. Thay vào PT ban đầu thu được x=y=1x=y=1 (loại vì đang xét x>yx>y)

TH2: x,yx,y đều âm. Ta thay x=a,y=bx=−a,y=−b với a,ba,b nguyên dương.

Phương trình trở thành 2a(2b2+1)2b(2a2+1)+1=(ab)32a(2b2+1)−2b(2a2+1)+1=(ab)3

Đây là dạng PT tương tự TH1, ta cũng thu được a=b=1a=b=1, tức là x=y=1x=y=−1

TH3: x>0,y<0x>0,y<0. Đặt x=a,y=bx=a,y=−b (a,ba,b nguyên dương)

PT tương đương: 2b(2a2+1)+2a(2b2+1)1=(ab)32b(2a2+1)+2a(2b2+1)−1=(ab)3

2(a+b)1ab⇒2(a+b)−1⋮ab. Vì 2(a+b)102(a+b)−1≠0 nên 2(a+b)1ab(a2)(b2)32(a+b)−1≥ab⇒(a−2)(b−2)≤3

Với a,b1a,b≥1 dễ dàng suy ra không có bộ nghiệm nào thỏa mãn

TH4: x<0,y>0x<0,y>0. Đặt x=a,y=bx=−a,y=b (a,ba,b nguyên dương)

PT tương đương 2a(2b2+1)+2b(2a2+1)+1+(ab)3=02a(2b2+1)+2b(2a2+1)+1+(ab)3=0 (vô lý)

Vậy (x,y)=(1;1)(x,y)=(1;1) hoặc (x,y)=(1;1)

4 tháng 5 2018

1. \(x^4-2x^3+3x^2-2x+1=0\)

\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)+x^2=0\)

\(\Leftrightarrow x^2\left(x-1\right)^2+\left(x-1\right)^2+x^2=0\)

\(\Leftrightarrow\) (x - 1)2 = 0 và x2 = 0

\(\Leftrightarrow\) x - 1 = 0 và x = 0

\(\Leftrightarrow\) x = 1 và x = 0 (vô lí)

Vậy phương trình vô nghiệm.

4 tháng 5 2018

2. \(\left(x^2-4\right)^2=8x+1\)

\(\Leftrightarrow x^4-8x^2+16=8x+1\)

\(\Leftrightarrow x^4-8x^2-8x+15=0\)

\(\Leftrightarrow x^4-x^3+x^3-x^2-7x^2+7x-15x+15=0\)

\(\Leftrightarrow x^3\left(x-1\right)+x^2\left(x-1\right)-7x\left(x-1\right)-15\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2-7x-15\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+4x^2-12x+5x-15\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)+4x\left(x-3\right)+5\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2+4x+5\right)=0\)

\(\Leftrightarrow\) x - 1 = 0 hoặc x - 3 = 0 hoặc x2 + 4x + 5 = 0

1) x - 1 = 0 \(\Leftrightarrow\) x = 1

2) x - 3 = 0 \(\Leftrightarrow\) x = 3

3) \(x^2+4x+5=0\left(\text{loại vì }x^2+4x+5=\left(x+2\right)^2+1>0\forall x\right)\)

Vậy tập nghiệm của pt là S = {1;3}.

6 tháng 2 2019

ta có : x^5+2x^4+3x^3+3x^2+2x+1=0

\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0

\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0

\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0

\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0

\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0

x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)

\(\Rightarrow\)x+1=0

\(\Rightarrow\)x=-1

CÒN CÂU B TỰ LÀM (02042006)

b: x^4+3x^3-2x^2+x-3=0

=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0

=>(x-1)(x^3+4x^2+2x+3)=0

=>x-1=0

=>x=1

1 tháng 3 2017

ai lam on giup to voi

26 tháng 8 2020

\(x^4+2x^3+3x^2+2x=y^2-y\)

\(\Leftrightarrow x^4+x^2+1+2x^3+2x^2+2x=y^2-y+1\)

\(\Leftrightarrow\left(x^2+x+1\right)^2=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\Leftrightarrow\left(x^2+x+1-y+\frac{1}{2}\right)\left(x^2+x+1+y-\frac{1}{2}\right)=\frac{3}{4}\)

\(\Leftrightarrow\left(x^2+x-y+\frac{3}{2}\right)\left(x^2+x+y+\frac{1}{2}\right)=\frac{3}{4}\)

\(\Leftrightarrow\left(2x^2+2x-2y+3\right)\left(2x^2+2x+2y+1\right)=3\)

Đến đây chắc khó.

1 tháng 2 2019

Câu 1 : D

Câu 2 : A

Câu 3 : B

Câu 4 : A

Câu 5 : C

1 tháng 2 2019

lớp 8 thì mấy bài này dễ thôi