Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm nghiệm nguyên của các pt sau:
1/ x3 - y3 = 91.
2/ x2 - xy = 6x - 5y - 8.
3/ x2 + y2 - x - y = 8.
Nguyễn Huy TúAce Legonasoyeon_Tiểubàng giảiVõ Đông Anh Tuấn
Ta có : \(x^2-x-xy+3y=8\)
<=> \(\left(x^2-xy+2x\right)-\left(3x-3y+6\right)=2\)
<=> \(\left(x-3\right)\left(x-y+2\right)=2\)
đến đây ngon rồi ... tự xử nhá :)
Bạn đánh lại đề một lần nữa cẩn thận hơn nha bạn, để mọi người còn có thể giúp đỡ bạn nhé.
xy - 4x = 29 - 5y
<=> x(y - 4) - 29 + 5y = 0
<=> x(y - 4) + 5(y - 4) - 9 = 0
<=> (x + 5)(y - 4) = 9 = 1.9 = 3.3
Lập bảng:
x + 5 | 1 | -1 | 3 | -3 | 9 | -9 |
y - 4 | 9 | -9 | 3 | -3 | 1 | -1 |
x | -4 | -6 | -2 | -8 | 4 | -14 |
y | 13 | -5 | 7 | 1 | 5 | 3 |
Ta có:
\(x^2-xy=6x-5y-8\)
\(\Rightarrow x^2-6x+8=xy-5y\)
\(\Rightarrow x^2-6x+8=y\left(x-5\right)\) (1)
Nếu x = 5, thay vào phương trình ta có:
3 = 0y.(vô lí, phương trình vô nghiệm)
\(\Rightarrow\) Chia cả hai vế của (1) cho x-5 ta có:
\(y=\dfrac{x^2-6x+8}{x-5}=\dfrac{x^2-6x+5+3}{x-5}=x-1+\dfrac{3}{x-5}\)
Vì \(y\in Z\) nên ta có \(\dfrac{3}{x-5}\in Z\Rightarrow x-5\inƯ\left(3\right)\)
Từ đó ta tìm được các nghiệm (x;y) của phương trình là:(6 ; 8) ; (4 ; 0);(8 ; 8) ; (2 ; 0).
Phần lập bảng với thử chọn bạn tự làm nha!
a) \(2x+13y=156\) (1)
.Ta thấy 156 và 2y đều chia hết cho 2 nên \(13y\) chia hết cho 2,do đó y chia hết cho 2 (do 13 và 2 nguyên tố cùng nhau)
Đặt \(y=2t\left(t\in Z\right)\).Thay vào phương trình (1),ta được:\(2x+13.2t=156\Leftrightarrow x+13t=78\)
Do đó \(\hept{\begin{cases}x=78-13t\\y=2t\end{cases}}\) (t là số nguyên tùy ý)
b)Biến đổi phương trình thành: \(2xy-4x=7-y\)
\(=2x\left(y-2\right)=7-y\).Ta thấy \(y\ne2\)(vì nếu y = 2 thì ta có 0.2x = 5 , vô ngiệm )
Do đó \(x=\frac{7-y}{y-2}=\frac{7+2-y-2}{y-2}=\frac{9}{y-2}-1\) .Do vậy để x nguyên thì \(\frac{9}{y-2}\) nguyên
hay \(y-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\).Đến đây lập bảng tìm y là xong!
c) \(3xy+x-y=1\)
\(\Leftrightarrow9xy+3x-3y=3\)
\(\Leftrightarrow9xy+3x-3y-1=2\)
\(\Leftrightarrow3x\left(3y+1\right)-1\left(3y+1\right)=2\)
\(\Leftrightarrow\left(3x-1\right)\left(3y+1\right)=2\).Đến đây phương trình đã được đưa về phương trình ước số,bạn tự giải (mình lười quá man!)
x2 + 8 - xy + 6x - 5y = 0
<=> x2 + 6x + 8 - y(x + 5) = 0
<=> x2 + 6x + 8 = y(x + 5)
<=> \(y=\dfrac{x^2+6x+8}{x+5}\)
Có \(y=\dfrac{x^2+6x+8}{x+5}=x+1+\dfrac{3}{x+5}\)
Để \(y\inℤ\Rightarrow3⋮x+5\Rightarrow x+5\inƯ\left(3\right)\)
\(\Rightarrow x+5\in\left\{1;3;-1;-3\right\}\Leftrightarrow x\in\left\{-4;-2;-6-8\right\}\)
Với x = -2 => y = 0
Với x = -4 => y = -1
Với x = - 6 => y = -8
Với x = -8 => y = -8
Vậy (x;y) = (-2 ; 0) ; (-4 ; -1) ; (-6 ; -8) ; (-8 ; -8)