Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y\left(x-2\right)=x^2+3\)
\(\Leftrightarrow\)\(y\left(x-2\right)-x^2=3\)
\(\Leftrightarrow\)\(y\left(x-2\right)-x^2+4=7\)
\(\Leftrightarrow\)\(y\left(x-2\right)-\left(x-2\right)\left(x+2\right)=7\)
\(\Leftrightarrow\)\(\left(x-2\right)\left(y-x-2\right)=7\)\(=1.7=\left(-1\right).\left(-7\right)\)
Do \(x,y\)nguyên nên \(x-2\)và \(y-x-2\)nguyên
Ta lập bảng sau:
\(x-2\) | \(1\) | \(7\) | \(-1\) | \(-7\) |
\(x\) | \(3\) | \(9\) | \(1\) | \(-5\) |
\(y-x-2\) | \(7\) | \(1\) | \(-7\) | \(-1\) |
\(y\) | \(12\) | \(12\) | \(-4\) | \(-4\) |
Vậy....
p/s: phần lập bảng bn ktra lại nha, (sợ tính sai)
Xét x=3 thì pt vô nghiệm
xét x khác 3, ta có \(y=\frac{x^2+3}{x-2}=\frac{x^2-4+7}{x-2}=x+2+\frac{7}{x-2}\)
Mà x,y là số nguyên => \(\frac{7}{x-2}\) là số nguyên => x-2 thuộc ước của 7, đến đây tự làm nhá
y^5 co tan cung la 5
suy ra x^2 co tan cung la 1
suy ra x=0
y=
khai triển và rút gọn 2 vế ta được x(x+1)=y4+2y3+3y2+2y
<=> x(x+1)=y2(y+1)2+2y(y+1)
<=> x2+x+1=(y2+y+1)2 (1)
nếu x>0 thì từ x2<x2+x+1<(x+1)2 => (1) không có nghiệm nguyên x>0
nếu x=0 hoặc x=-1 thì từ (1) => y2+y+1 = \(\pm\)1 \(\Leftrightarrow\hept{\begin{cases}y=0\\y=-1\end{cases}}\)
ta có nghiệm (x;y)=(0;0);(0;-1);(-1;0);(-1;-1)
nếu x<-1 thì từ (x+1)2<x2+x+1<x2
=> (1) không có nghiệm nguyên x<-1
tóm lại phương trình đã cho có 4 nghiệm nguyên (x;y)=(0;0);(0;-1);(-1;0);(-1;-1)
Ta có:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)
\(\Rightarrow\frac{2x+2y+1}{2xy}=\frac{1}{2}\)
\(\Rightarrow2\left(2x+2y+1\right)=2xy\)(tích thung tỉ bằng tích ngoại tỉ)
\(\Rightarrow2x+2y+1=2xy\)
\(\Rightarrow2xy-2x-2y=1\)
\(\Rightarrow2x\left(y-1\right)-2\left(y-1\right)=3\)
\(\Rightarrow\left(y-1\right)\left(2x-2\right)=3=1\cdot3=3\cdot1=\left(-1\right)\left(-3\right)=\left(-3\right)\left(-1\right)\)
Bạn tự lập bảng nhé!
\(\frac{2y}{2xy}+\frac{2x}{2xy}+\frac{1}{2xy}=\frac{xy}{2xy}\)
\(\Leftrightarrow2y+2x+1-xy=0\)
\(\Leftrightarrow x\left(2-y\right)=-2y-1\)
\(x,y\in Z\) nên
\(\left(-2y-1\right)⋮\left(2-y\right)\)
đến đây lập bảng là xog. cũng giống như tìm để nó \(\in Z\) đó mà
Đề này thầy mk cho lm rồi nhưng chưa chữa. Mà mk cx ko lm đc.
\(x^{2007}-9x^{2005}+5x^2-14x-3=0\)
\(\Leftrightarrow x^{2005}(x^{2}-9)+5x^{2}-15x+x-3=0\)
\(\Leftrightarrow x^{2005}(x-3)(x+3)+5x(x-3)+x-3=0\)
\(\Leftrightarrow (x^{2006}+3x^{2005}+5x+1)(x-3)=0\)
Xét đa thức : \(P(x)=x^{2006}+3x^{2005}+5x+1\)
\(P(x)<0\) với \(x \in \{-1;-2;-3 \}\)
\(P(x)>0\) với \(x \ge 0\) hoặc \(x \le -4\)
Vậy \(P(x) \ne 0\) \(\forall x\inℤ\)nên x = 3
1 số chính phương chia 4 dư 0 hoặc 1
Mà vế trái chia 4 có số dư lớn nhất là 2
Vế phải chia 4 dư 3
Suy ra phương trình vô nghiệm