Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{x+1}\left(x+4\right)=\left(x+18\right)\sqrt{6+x}-3x-40\)
\(pt\Leftrightarrow\sqrt{x+1}\left(x+4\right)-14=\left(x+18\right)\sqrt{6+x}-63-3x-9\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+4\right)^2-196}{\sqrt{x+1}\left(x+4\right)+14}=\frac{\left(x+18\right)^2\left(x+6\right)-3969}{\left(x+18\right)\sqrt{6+x}+63}-3\left(x-3\right)\)
\(\Leftrightarrow\frac{x^3+9x^2+24x-180}{\sqrt{x+1}\left(x+4\right)+14}-\frac{x^3+42x^2+540x-2025}{\left(x+18\right)\sqrt{6+x}+63}+3\left(x-3\right)=0\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x^2+12x+60\right)}{\sqrt{x+1}\left(x+4\right)+14}-\frac{\left(x-3\right)\left(x^2+45x+675\right)}{\left(x+18\right)\sqrt{6+x}+63}+3\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{x^2+12x+60}{\sqrt{x+1}\left(x+4\right)+14}-\frac{x^2+45x+675}{\left(x+18\right)\sqrt{6+x}+63}+3\right)=0\)
Pt trong ngoặc to to kia vô nghiệm
Suy ra x=3
b)\(3\left(\sqrt{x+9}-\sqrt{x+1}\right)=4-4x\)
\(pt\Leftrightarrow\sqrt{x+9}-\sqrt{x+1}=\frac{4-4x}{3}\)
\(\Leftrightarrow2x+10-2\sqrt{\left(x+1\right)\left(x+9\right)}=\frac{16x^2-32x+16}{9}\)
\(\Leftrightarrow-2\sqrt{\left(x+1\right)\left(x+9\right)}=\frac{16x^2-32x+16}{9}-\left(2x+10\right)\)
\(\Leftrightarrow4\left(x+1\right)\left(x+9\right)=\frac{256x^4-1600x^3+132x^2+7400x+5476}{81}\)
\(\Leftrightarrow\frac{-64\left(x^2-5x-5\right)\left(4x^2-5x-8\right)}{81}=0\)
mỗi lần bình phương tự rút ra điều kiện mà khử nghiệm nhé :v
ĐKXĐ \(2\le x\le4\).Đặt A=\(\sqrt[4]{\left(x-2\right)\left(4-x\right)}+\sqrt[4]{x-2}+\sqrt[4]{4-x}+6x\sqrt{3x}\)
Do x\(\ge2>0\)nên ADBĐT CAUCHY ta được:
\(\sqrt[4]{1\cdot1\cdot\left(x-2\right)\left(4-x\right)}\le\frac{1+1+x-2+4-x}{4}=1\)
\(\sqrt[4]{x-2}\le\frac{1+1+1+x-2}{4}=\frac{1}{4}\)
\(\sqrt[4]{4-x}\le\frac{1+1+1+4-x}{4}=\frac{7}{4}\)
\(6x\sqrt{3x}=2\sqrt{27x^3}\le x^3+27\)
_Do đó A\(\le1+\frac{1}{4}+\frac{7}{4}+x^3+27=x^3+30\)
Dấu = xảy ra \(\Leftrightarrow x=3\)(thỏa mãn ĐKXĐ)
Điều kiện: \(x\ge-1\)
Đặt \(\sqrt[4]{x+1}=a\ge0\) thì phương trình trở thành.
\(a^4-23a^2+30a-8=0\)
\(\Leftrightarrow\left(a-4\right)\left(a-1\right)\left(a^2+5a-2\right)=0\)
\(\Leftrightarrow a=4;a=1;a=\frac{-5+\sqrt{33}}{2};a=\frac{-5-\sqrt{33}}{2}\left(l\right)\)
Thế a ngược lại tìm được x
\(-4\sqrt{3-x}+30\sqrt{x+2}=13x+30\)
ĐK:\(-2\le x\le3\)
\(pt\Leftrightarrow-\left(4\sqrt{3-x}-4\right)+\left(30\sqrt{x+2}-60\right)=13x-26\)
\(\Leftrightarrow-\frac{16\left(3-x\right)-16}{4\sqrt{3-x}+4}+\frac{900\left(x+2\right)-3600}{30\sqrt{x+2}+60}=13\left(x-2\right)\)
\(\Leftrightarrow\frac{16\left(x-2\right)}{4\sqrt{3-x}+4}+\frac{900\left(x-2\right)}{30\sqrt{x+2}+60}-13\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{16}{4\sqrt{3-x}+4}+\frac{900}{30\sqrt{x+2}+60}-13\right)=0\)
Suy ra x=2 nghiệm kia khó nuốt quá t gg
trời, sao vế kia giống 1 bài toán khó nx z