Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\sqrt{x^2-4x+3}-x=0\)
\(ĐK:\left\{{}\begin{matrix}\sqrt{x^2-4x+3\ge0}\\x-1\ge0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x\ge3\end{matrix}\right.\)
\(PT\Leftrightarrow\sqrt{x^2-4x+3}-\left(x-1\right)=0\)
\(\Leftrightarrow\frac{x^2-4x+3-\left(x-1\right)^2}{\sqrt{x^2-4x+3}+\left(x-1\right)}=0\)
\(\Leftrightarrow2-2x=0\Rightarrow x=1\left(tm\right)\)
1) ĐK:x\(\ge\frac{1}{2}\)
PT\(\Leftrightarrow\sqrt{2x-1}=x\)
\(\Leftrightarrow\begin{cases}x\ge0\\2x-1=x^2\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ge0\\x=1\end{cases}\)
\(\Leftrightarrow x=1\) (thỏa mãn)
\(A=\frac{\left(3+\sqrt{5}\right)^2+\left(3-\sqrt{5}\right)^2}{\left(3+\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)
\(A=\frac{18+10}{4}\)
\(A=7\)
\(\Leftrightarrow2\left(x^2+1\right)-2x\sqrt{x^2+1}=5\)
\(\Leftrightarrow x^2+1-2x\sqrt{x^2+1}+x^2=4\)
\(\Leftrightarrow\left(\sqrt{x^2+1}-x\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+1}-x=2\\\sqrt{x^2+1}-x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=x+2\left(x\ge-2\right)\\\sqrt{x^2+1}=x-2\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=x^2+4x+4\\x^2+1=x^2-4x+4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{3}{4}\\x=\frac{3}{4}< 2\left(l\right)\end{matrix}\right.\)
ĐKXĐ: \(x\ge\frac{3}{2}\)
\(\Leftrightarrow\sqrt{5x-1}+\sqrt{2x-3}=\sqrt{3x-2}\)
\(\Leftrightarrow7x-4+2\sqrt{\left(5x-1\right)\left(2x-3\right)}=3x-2\)
\(\Leftrightarrow\sqrt{10x^2-17x+3}=1-2x\)
Do \(x\ge\frac{3}{2}\Rightarrow1-2x< 0\)
Phương trình vô nghiệm
\(3\sqrt{x-2}+3-x+3-x-\sqrt{x+6}=0\)
\(\Leftrightarrow\frac{3\left(x-3\right)}{\sqrt{x-2}-1}-\left(x-3\right)-\frac{\left(x+2\right)\left(x-3\right)}{x-\sqrt{x+6}}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{3}{\sqrt{x-2}-1}-1-\frac{x+2}{x-\sqrt{x+6}}\right)=0\)
x=3 là nghiệm
mk chỉ biết đến đấy thôi
a/ \(\Leftrightarrow\sqrt{x^2+x+3}-\sqrt{x^2+2}+\sqrt{x^2+x+8}-\sqrt{x^2+7}=0\)
\(\Leftrightarrow\frac{x+1}{\sqrt{x^2+x+3}+\sqrt{x^2+2}}+\frac{x+1}{\sqrt{x^2+x+8}+\sqrt{x^2+7}}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{\sqrt{x^2+x+3}+\sqrt{x^2+2}}+\frac{1}{\sqrt{x^2+x+8}+\sqrt{x^2+7}}\right)=0\)
\(\Leftrightarrow x+1=0\) (ngoặc to phía sau luôn dương)
\(\Rightarrow x=-1\)
b/
\(\sqrt{7-x^2+x\sqrt{x+5}}=\sqrt{3-2x-x^2}\) (1)
\(\Rightarrow7-x^2+x\sqrt{x+5}=3-2x-x^2\)
\(\Leftrightarrow x\sqrt{x+5}=-2x-4\)
\(\Rightarrow x^2\left(x+5\right)=4x^2+16x+16\)
\(\Rightarrow x^3+x^2-16\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)
Do các phép biến đổi ko tương đương nên cần thay nghiệm vào (1) để kiểm tra
c/ ĐKXĐ: \(x\ge\frac{5}{3}\)
\(\Leftrightarrow\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}=0\)
\(\Leftrightarrow\frac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{x-3}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)
\(\Leftrightarrow x-3=0\) (ngoặc phía sau luôn dương)
d/ Đề bài là \(2\sqrt{2x+3}\) hay \(2\sqrt{2x-3}\) bạn?
e/ ĐKXĐ: \(x\ge-3\)
\(\Leftrightarrow\sqrt{x+3+2\sqrt{x+3}+1}=x+4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+3}+1\right)^2}=x+4\)
\(\Leftrightarrow\sqrt{x+3}+1=x+4\)
\(\Leftrightarrow x+3-\sqrt{x+3}=0\)
\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x+3}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x+3=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)