Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
minh giai phan d, nha bn :
x-a/b+c + x-b/c+a + x-c/a+b=3
=> (x-a/b+c - 1)+(x-b/a+c - 1 )+(x-c/a+b - 1) = 3-3=0
=>x-a-b-c/b+c + x-a-b-c/a+c + x-a-b-c/a+b =0
=>(x-a-b-c)(1/b+c + 1/a+c + 1/a+b )=0
Vi 1/b+c + 1/a+c + 1/a+b luon lon hon 0=>x-a-b-c=0
=>x=a+b+c
Câu 2:
a: \(\Leftrightarrow a^3x-16ax-16a=4a^2+16\)
\(\Leftrightarrow x\left(a^3-16a\right)=4a^2+16a+16=\left(2a+4\right)^2\)
Để phương trình có vô nghiệm thì \(a\left(a-4\right)\left(a+4\right)=0\)
hay \(a\in\left\{0;4;-4\right\}\)
Để phương trình có nghiệm thì \(a\left(a-4\right)\left(a+4\right)< >0\)
hay \(a\notin\left\{0;4;-4\right\}\)
b: \(\Leftrightarrow m^2x+3mx-4x=m-1\)
\(\Leftrightarrow x\left(m^2+3m-4\right)=m-1\)
Để phương trình có vô số nghiệm thì m-1=0
hay m=1
Để phương trình vô nghiệm thì m+4=0
hay m=-4
Để phương trình có nghiệm duy nhất thì (m-1)(m+4)<>0
hay \(m\in R\backslash\left\{1;-4\right\}\)
bài 2:
\(S=\dfrac{1}{1+x1+x1x2}+\dfrac{1}{1+x2+x2x3}+\dfrac{1}{1+x3+x3x1}\)
=\(S=\dfrac{1}{1+x1+x1x2}+\dfrac{x1}{x1\left(1+x2+x2x3\right)}+\dfrac{x1x2}{x2x1\left(1+x3+x3x1\right)}\)
S=\(\dfrac{1}{x+x1+x1x2}+\dfrac{x1}{x1+x1x2+1}+\dfrac{x1x2}{x1x2+1+x1}\)
S=\(\dfrac{1+x1+x1x2}{x1x2+1+x1}=1\)
chúc bạn học tốt ^^
Nguyễn TrươngNguyễn Việt LâmNguyenTruong Viet TruongKhôi BùiAkai HarumaÁnh LêDƯƠNG PHAN KHÁNH DƯƠNGPhùng Tuệ Minhsaint suppapong udomkaewkanjana
1,
\(x^2-2ax+a^2=\left(x-a\right)^2\)
\(x^2-ax=x\left(x-a\right)\)
Vậy MSC: \(\left(x-a\right)^2x\)
2,
\(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)
\(x^2-x=x\left(x-1\right)\)
\(x^2+x+1\)
vậy MSC là: \(x\left(x-1\right)\left(x^2+x+1\right)\)
\(\dfrac{x-a}{a+1}+\dfrac{x-1}{a-1}=\dfrac{2a}{1-a^2}\) (ĐK: \(a\ne\pm1\))
\(\Rightarrow\dfrac{\left(x-a\right)\left(a-1\right)}{a^2-1}+\dfrac{\left(x-1\right)\left(a+1\right)}{a^2-1}+\dfrac{2a}{a^2-1}=0\)
\(\Rightarrow\dfrac{ax-x-a^2+a+ax+x-a-1+2a}{a^2-1=0}\)
\(\Rightarrow\dfrac{2ax-a^2+2a-1}{a^2-1}=0\)
\(\Rightarrow2ax-\left(a^2-2a+1\right)=0\)
\(\Rightarrow2ax-\left(a-1\right)^2=0\)
Với a =0 , ta có đẳng thưc sai
Với \(a\ne0\), ta được :
\(x=\dfrac{\left(a+1\right)^2}{2a}\)