Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)
\(\Leftrightarrow\)\(\left(x^2+6x+5\right)\left(x^2+6x+8\right)-40=0\)
Đặt \(x^2+6x+5=t\) ta có:
\(t\left(t+3\right)-40=0\)
\(\Leftrightarrow\)\(t^2+3t-40=0\)
\(\Leftrightarrow\)\(\left(t-5\right)\left(t+8\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}t-5=0\\t+8=0\end{cases}}\)
Thay trở lại ta có: \(\orbr{\begin{cases}x^2+6x=0\\x^2+6x+13=0\end{cases}}\)
(*) \(x^2+6x=0\)
\(\Leftrightarrow\)\(x\left(x+6\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x+6=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-6\end{cases}}\)
(*) \(x^2+6x+13=0\)
\(\Leftrightarrow\)\(\left(x+3\right)^2+4=0\) (vô lý)
Vậy......
(x4-x3)+(6x3-6x2)-(6x2-6x)-(x-1)=0
(x-1)(x3+6x2-6x-1)=0
(x-1)[(x3-x2)+(7x2-7x)+(x-1)]=0
(x-1)2(x2+7x+1)=0
(x-1)2[(x2+3,5×2x2x+12,25-11,25)=0
(x-1)2[(x+3,5)2-(căn11,25)2]=0
(x-1)2(x+3,5-căn5-căn11,25)(xx+3,5+căn11,25)=0
Từ đó suy ra 3 giá trị của x
Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618
Thụy Lâm bn dừng lại ik ko mik sẽ nhờ thầy phynit giải quyết vụ này đấy
a)\(=\left(x^4-x^3\right)+\left(6x^3-6x^2\right)-\left(6x^2-6x\right)-\left(x-1\right)\)
\(=x^3\left(x-1\right)+6x^2\left(x-1\right)-6x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+6x^2-6x-1\right)\)
\(=\left(x-1\right)\left[\left(x-1\right)\left(x^2+x+1\right)+6x\left(x-1\right)\right]\)
\(=\left(x-1\right)^2\left(x^2+7x+1\right)\)
a) \(x^4-4x^3+12x-9=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2-3x^2+3x+9x-9=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-3x+9\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)-3\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-3\right)\left(x-3\right)=0\)
\(\Leftrightarrow x-1=0\)hoặc \(x^2-3=0\)hoặc \(x-3=0\)
\(\Leftrightarrow x=1\)hoặc \(x=\pm\sqrt{3}\)hoặc \(x=3\)
Vậy tập nghiệm của phương trình là : \(S=\left\{1;\pm\sqrt{3};3\right\}\)
b) \(x^5-5x^3+4x=0\)
\(\Leftrightarrow x^5-x^3-4x^3+4x=0\)
\(\Leftrightarrow x^3\left(x^2-1\right)-4x\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^3-4x\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x^2-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=0\)hoặc \(x=\pm2\)hoặc \(x=\pm1\)
Vậy tập nghiệm của phương trình là : \(S=\left\{0;\pm2;\pm1\right\}\)
c) \(x^4-4x^3+3x^2+4x-4=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2+4x-4=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+4=0\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-2x^2-x^2+4=0\right)\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-2\right)-\left(x-2\right)\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow x-1=0\)
hoặc \(x^2+x+2=\left(x+\frac{1}{2}^2\right)+\frac{7}{4}=0\left(ktm\right)\)
hoặc \(x-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;2\right\}\)
\(a,PT\Leftrightarrow8x^3-6x^2+4x-3=3x^3-36x^2+x-12\)
\(\Leftrightarrow5x^3+30x^2+3x+9=0\)
\(\Leftrightarrow x=-5,95...\)
\(b,PT\Leftrightarrow2x+22-3x^2-33x=6x-15x^2-4+10x\)
\(\Leftrightarrow12x^2-47x+26=0\)
<=> (3x - 2)(4x - 13) = 0
<=> x = 2/3 hoặc x = 13/4
c, Tách ra <=> (2x - 1)(2x - 5) = 0 <=> ...
\(\left(x^2-4\right)+\left(8-5.x\right).\left(x+2\right)+4.\left(x-2\right).\left(x+1\right)=0\)
\(\Leftrightarrow x^2-4+8.x+16-5.x^2-10.x+\left(4.x-8\right).\left(x+1\right)=0\)
\(\Leftrightarrow x^2-4+8.x+16-5.x^2-10.x+4.x^2+4.x-8.x-8=0\)
\(\Leftrightarrow0+4-6.x=0\)
\(\Leftrightarrow4-6.x=0\)
\(\Leftrightarrow-6.x=-4\)
\(\Rightarrow x=\frac{2}{3}\)
Vậy x = \(\frac{2}{3}\)
a)
(x-2)2 = 1 - 5x
<=> x2 - 4x + 4 - 1 + 5x = 0
<=> x2 + x + 3 = 0
<=> x2 + 2.1/2 . x + 1/4 + 11/4 = 0
<=> (x+1/2)2 + 11/4 = 0
mà (x+1/2)2 + 11/4 >= 11/4 > 0 với mọi x thuộc R
Vậy phương trình vô nghiệm
b)
x4 - 5x2 + 4 = 0
<=> x4 - 4x2 + 4 - x2 = 0
<=> (x2 - 2) - x2 = 0
<=> (x2 - x - 2) (x2 + x - 2) = 0
<=> [(x-1/2)2 - 9/4] [ (x+1/2)2 - 9/4] = 0
<=> (x-2) (x+1) (x + 2 ) (x - 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\orbr{\begin{cases}x=-2\\x=-1\end{cases}}\)
Ta thấy x = 0 ko phải là nghiệm của pt => x khác 0
Chia cả 2 vế của pt cho x^2 ta được :
x^2+5x-12+5/x+1/x^2 = 0
<=> (x^2+1/x^2)+5.(x+1/x) - 12 = 0
Đặt x+1/x = a => x^2+1/x^2 = a^2-2
pt trở thành :
a^2-2+5a-12 = 0
<=> a^2+5a-14 = 0
<=> (a^2-2a)+(7a-14) = 0
<=> (a-2).(a+7) = 0
<=> a=2 hoặc a=-7
<=> x+1/x = 2 hoặc x+1/x = -7
Đến đó bạn tự nhân x vào 2 vế rùi chuyển sang mà giải nha
Tk mk nha
Đặt x+1/x = a => x^2+1/x^2 = a^2-2
Bạn ơi khúc này bạn có thể nói rõ hơn 1 tí được không ạ
Cảm ơn bạn💞