Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(4x^2-3x-18\right)^2=\left(4x^2+3x\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}4x^2-3x-18=4x^2+3x\\4x^2-3x-18=-4x^2-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}6x+18=0\\8x^2-18=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=\pm\frac{3}{2}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-3;\pm\frac{3}{2}\right\}\)
b) \(9\left(x-3\right)^2=4\left(x+2\right)^2\)
\(\Leftrightarrow\left(3x-9\right)^2=\left(2x+4\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}3x-9=2x+4\\3x-9=-2x-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-13=0\\5x-5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=13\\x=1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{13;1\right\}\)
\(4x^2-4x-5\left|2x-1\right|-5=0\)
\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)
\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)
\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)
TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)
\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)
\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)
TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)
\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)
\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh
Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }
a)\(3x-1-5\left(x+2\right)=x-4\)
\(\Leftrightarrow3x-1-5x-10=x-4\)
\(\Leftrightarrow3x-5x-x=-4+1+10\)
\(\Leftrightarrow-3x=7\)
\(\Leftrightarrow x=-\frac{7}{3}\)
a) \(x^4-4x^3+12x-9=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2-3x^2+3x+9x-9=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-3x+9\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)-3\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-3\right)\left(x-3\right)=0\)
\(\Leftrightarrow x-1=0\)hoặc \(x^2-3=0\)hoặc \(x-3=0\)
\(\Leftrightarrow x=1\)hoặc \(x=\pm\sqrt{3}\)hoặc \(x=3\)
Vậy tập nghiệm của phương trình là : \(S=\left\{1;\pm\sqrt{3};3\right\}\)
b) \(x^5-5x^3+4x=0\)
\(\Leftrightarrow x^5-x^3-4x^3+4x=0\)
\(\Leftrightarrow x^3\left(x^2-1\right)-4x\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^3-4x\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x^2-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=0\)hoặc \(x=\pm2\)hoặc \(x=\pm1\)
Vậy tập nghiệm của phương trình là : \(S=\left\{0;\pm2;\pm1\right\}\)
c) \(x^4-4x^3+3x^2+4x-4=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2+4x-4=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+4=0\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-2x^2-x^2+4=0\right)\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-2\right)-\left(x-2\right)\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow x-1=0\)
hoặc \(x^2+x+2=\left(x+\frac{1}{2}^2\right)+\frac{7}{4}=0\left(ktm\right)\)
hoặc \(x-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;2\right\}\)
x^4 + 2x^3 + 5x^2 + 4x-12 = 0
<=> (x^4 - x^3) + (3x^3-3x^2) + (8x^2 - 8x) + (12x-12) = 0
<=> (x-1).(x^3 + 3x^2 + 8x+12) = 0
<=> (x-1).[(x^3+2x^2)+(x^2+2x)+(6x+12)] = 0
<=>(x-1).(x+2).(x^2+x+6) = 0
<=> x= 1 hoặc x = -2
x4 - 4x3 + 12x -9 = 0
<=> x4 - x3 - 3x3 + 3x2 - 3x2 + 3x + 9x - 9 = 0
<=> x3(x-1) - 3x2(x-1) - 3x(x-1) + 9(x-1) = 0
<=> (x-1)(x3 - 3x2 - 3x + 9) = 0
<=> (x-1)[x2(x-3) - 3(x-3)] = 0
<=> (x-1)(x-3)(x2 - 3) = 0
=> x-1 = 0 hoặc x - 3= 0 hoặc x2 - 3 = 0
=> x = 1 hoặc x = 3 hoặc x = \(\pm\sqrt{3}\)
Vậy S = ...
1/
-x^3 -5x^2 + 4x +4
=> x1 =-5.5877............
x2=1.1895.............
x3=-0.6018............
dễ ợt
a)\(\left(x-4\right)^2=36\)
\(\Rightarrow\left(x-4\right)^2=6^2\)
\(\Rightarrow x-4=6\)
\(\Rightarrow x=6+4\)
\(\Rightarrow x=10\)
tíc mình nha
từ đề bài=> (x-2)^2 = 9
x- 2 = 3 hoặc x- 2 = -3
=> x = 5 hoặc x = -1
vậy x= 5 hoặc x= -1
x2 -4x+4=9
<=>(x-2) 2=9
<=>x-2=3
<=>x=5