K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2015

Tiếp: \(a=1\Rightarrow\sqrt{1-\sqrt{x}}=1\Leftrightarrow x=0\) (thỏa mãn)

\(a=\frac{\sqrt{4009}-1}{2}\Rightarrow\sqrt{1-\sqrt{x}}=\frac{\sqrt{4009}-1}{2}\Leftrightarrow\sqrt{x}=1-\left(\frac{\sqrt{4009}-1}{2}\right)^2\)

Ta có: \(\frac{\sqrt{4009}-1}{2}>1\Rightarrow\left(\frac{\sqrt{4009}-1}{2}\right)^2>1\Rightarrow1-\left(\frac{\sqrt{4009}-1}{2}\right)^2<0\) (vô lí)

Vậy nghiệm duy nhất của Pt là x = 0

3 tháng 3 2017

Điều kiện: \(0\le x\le1\)

Đặt \(\sqrt{1-\sqrt{x}}=a\left(0\le a\le1\right)\)

\(\Rightarrow1-\sqrt{x}=a^2\)

\(\Leftrightarrow x=a^4-2a^2+1\)

Thế vào bài toán ta được

\(a^4-2a^2+1=\left(2005-a^2\right)\left(1-a\right)^2\)

\(\Leftrightarrow a^4-a^3-1003a^2+2005a-1002=0\)

\(\Leftrightarrow\left(a-1\right)^2\left(a^2+a-1002\right)=0\)

Vì \(0\le a\le1\)nên \(a^2+a-1002< 0\)

\(\Rightarrow a=1\)

\(\Leftrightarrow\sqrt{1-\sqrt{x}}=1\)

\(\Leftrightarrow x=0\)

3 tháng 3 2017

@ Ali phân tích hàm bậc 4 hay thật.

27 tháng 7 2017

đặt ản phụ giải hệ pt

27 tháng 7 2017

là sao bạn giải đc ko

ĐKXĐ: \(-1\le x\le1\)

Xét \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(1+x\right)+\left(1-x\right)+\sqrt{\left(1+x\right)\left(1-x\right)}\right]\)

\(=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)

Khi đó phương trình đề trở thành:

\(\sqrt{1+\sqrt{1-x}}\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)=\frac{2+\sqrt{1-x^2}}{3}\)

Vì \(2+\sqrt{1-x^2}>0\)nên ta có thể chia 2 vế cho \(2+\sqrt{1-x^2}\):

\(\Rightarrow\sqrt{1+\sqrt{1-x^2}}\left(\sqrt{1+x}-\sqrt{1-x}\right)=\frac{1}{\sqrt{3}}\),Bình phương 2 vế:

\(\Rightarrow\left(1+\sqrt{1-x^2}\right)\left[\left(1+x\right)+\left(1-x\right)-2\sqrt{\left(1+x\right)\left(1-x\right)}\right]=\frac{1}{3}\)

\(\Leftrightarrow\left(1+\sqrt{1-x^2}\right)\left(2-2\sqrt{1-x^2}\right)=\frac{1}{3}\Leftrightarrow2\left(1+\sqrt{1-x^2}\right)\left(1-\sqrt{1-x^2}\right)=\frac{1}{3}\)\(\Leftrightarrow1-\left(1-x^2\right)=\frac{1}{3}\Leftrightarrow x^2=\frac{1}{6}\Leftrightarrow x=\pm\frac{1}{\sqrt{6}}\)

Ta xét phương trình đề: vế phải luôn không âm vì vậy vế trái phải không âm 

Khi đó \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\ge0\Leftrightarrow1+x\ge1-x\Leftrightarrow x\ge0\)

Vậy ta chỉ nhận nghiệm duy nhất là \(x=\frac{1}{\sqrt{6}}\)