Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+\sqrt{x^2+2017}=2017\)
\(\Leftrightarrow x^4+x^2+\frac{1}{4}=x^2+2017-\sqrt{x^2+2017}+\frac{1}{4}\)
\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2=\left(\sqrt{x^2+2017}-\frac{1}{2}\right)^2\)
\(\Leftrightarrow x^2+\frac{1}{2}=\sqrt{x^2+2017}-\frac{1}{2}\)(vì \(\sqrt{x^2+2017}>\frac{1}{2}\))
\(\Leftrightarrow x^2-\sqrt{x^2+2017}+1=0\)
\(\Leftrightarrow\left(x^2+2017-\sqrt{x^2+2017}+\frac{1}{4}\right)=\frac{8065}{4}\)
\(\Leftrightarrow\left(\sqrt{x^2+2017}-\frac{1}{2}\right)^2=\frac{8065}{4}\)
\(\Leftrightarrow\sqrt{x^2+2017}=\frac{\sqrt{8065}+1}{2}\)
\(\Leftrightarrow x^2=\frac{\left(\sqrt{8065}+1\right)^2}{4}-2017\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{\left(\sqrt{8065}+1\right)^2}{4}-2017}\\x=-\sqrt{\frac{\left(\sqrt{8065}+1\right)^2}{4}-2017}\end{cases}}\)
từ a+b=3 => b=3-a
mặt khác: \(a^3-b^2=-3\)
=>\(a^3-\left(3-a\right)^2+3=0\)
\(\Rightarrow a^3-9+6a-a^2+3=0\)
\(\Rightarrow a^3-a^2+6a-6=0\)
\(\Rightarrow a^2\left(a-1\right)+6\left(a-1\right)=0\)
\(\Rightarrow\left(a^2+6\right)\left(a-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}a^2+6=0\\a-1=0\end{cases}\Rightarrow\hept{\begin{cases}a^2=-6\\a=1\end{cases}}}\)
=>a=1 vì \(a^2\ge0\)
=>\(\sqrt[3]{x-2}=1\)
\(\Rightarrow x-2=1\Rightarrow x=3\)
Vậy x=3
b) ta có: Đặt :\(\sqrt[3]{x-2}=a;\) Đk: \(x\ge-1\)
\(\sqrt{x+1}=b;b\ge0\)
ta có:\(\hept{\begin{cases}a+b=3\\a^3-b^2=-3\end{cases}}\)
đến đây dùng pp thế là đc rồi nhé!
\(\left\{{}\begin{matrix}2017-x=2017+y-2y\sqrt{2017}\\2017-y=2017+y-2x\sqrt{2017}\end{matrix}\right.\)
Trừ 2 vế ta có:
\(\Rightarrow y-x=y-x-2\sqrt{2017}\left(y-x\right)\)
\(\Rightarrow\left(y-x\right)\left(1-1+2\sqrt{2017}\right)=0\)
\(\Rightarrow x=y\)
thay vào hệ đầu
đoạn đầu mình chưa hiểu rõ cho lắm bạn ơi. bạn giải thích kĩ hơn 1 tí đc ko bạn
đặt x-2016=a
y-2017=b
z-2018=c
ta có\(\frac{1}{\sqrt{a}}-\frac{1}{a}+\frac{1}{\sqrt{b}}-\frac{1}{b}+\frac{1}{\sqrt{c}}-\frac{1}{c}=\frac{3}{4}\)
=>\(\left(\frac{1}{\sqrt{a}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{b}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{c}}-\frac{1}{2}\right)^2=0\)
=>\(a=b=c=4\)
còn lại tự lm nốt
bạn xem lai x trong căn có ^2 ko
có bài tương tự nè https://lazi.vn/edu/exercise/giai-phuong-trinh-x2-x-2004-2004