Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có điều kiện xác định của phương trình : \(1\le x\le2\)
Xét Với \(x\ge1\) thì \(\sqrt{x+1}\ge\sqrt{2};\sqrt{x+3}\ge2;2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}\ge0\)
\(\Rightarrow VT\ge2+\sqrt{2}>2\) (1)
Và : \(4-2x\le4-2.1=2\) => \(VP\le2\) (2)
Từ (1) và (2) suy ra không có giá trị nào của x thỏa mãn điều kiện trên.
Vậy PT đã cho vô nghiệm.
1 . \(\sqrt{x^4-2x^2+1}=x-1\)
<=> \(\sqrt{\left(x^2-1\right)^2}=x-1\)
<=> \(x^2-1=x-1\)
<=> \(x^2-x=0\)(vậy pt vô nghiệm)
1,\(\sqrt{\left(x^2-1\right)^2}=x-1\)
<=>\(x^2-x=0\)
<=>\(\orbr{\begin{cases}x1=0\\x2=1\end{cases}}\)
1,\(\sqrt{\left(x^2+4\right)}=5-\sqrt{\left(x^2+10\right)}\)
<=>\(x^2+4=25-10\sqrt{x^2+10}+x^2+10\)
<=>x^2 = -0.39 vô lý => vô nhiệm
Đặt \(\hept{\begin{cases}\sqrt{x+1}=a\\\sqrt{4-x}=b\end{cases}}\)
PT <=> a + b + ab = 5 và a2 + b2 = 5
Tới đây thì đơn giản rồi