Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
a)
DK: x\(\ge\)-2,x\(\ge\)\(\dfrac{1}{2}\)
=>\(\sqrt{4\left(x+2\right)}-\sqrt{2x-1}+\sqrt{9\left(x+2\right)}=0\)
\(\Leftrightarrow2\sqrt{x+2}-\sqrt{2x-1}+3\sqrt{x+2}=0\)
\(\Leftrightarrow5\sqrt{x+2}-\sqrt{2x-1}=0\)
\(\Leftrightarrow5\sqrt{x+2}=\sqrt{2x-1}\)
<=>25x+50=2x-1
=>23x=-51
=>x=\(-\dfrac{51}{23}\)(ko thỏa mãn dk)
=> phương trình vô nghiệm..
b)
ĐKXĐ:\(x\ge1,x\ge-1\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x-1\right)}-3\sqrt{x-1}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x+1}-3\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x+1}-3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)(nhận)
Vậy S={1;8}
c) ĐKXĐ:
\(x\ge0\)
\(\Leftrightarrow6-9\sqrt{2x}-2\sqrt{2x}+6x=6x-5\)
\(\Leftrightarrow-11\sqrt{2x}=-11\)
\(\Leftrightarrow\sqrt{2x}=1\)
\(\Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\)
Câu a :\(\sqrt{4x+8}-2\sqrt{2x-1}+\sqrt{9x+18}=0\) ( ĐK : \(x\ge\dfrac{1}{2}\) )
\(\Leftrightarrow\sqrt{4x+8}+\sqrt{9x+18}=\sqrt{2x-1}\)
\(\Leftrightarrow2\sqrt{x+2}+3\sqrt{x+2}=\sqrt{2x-1}\)
\(\Leftrightarrow5\sqrt{x+2}=\sqrt{2x-1}\)
\(\Leftrightarrow25\left(x+2\right)=2x-1\)
\(\Leftrightarrow25x+50=2x-1\)
\(\Leftrightarrow23x=-51\)
\(\Leftrightarrow x=-\dfrac{51}{23}< -\dfrac{1}{2}\)
Vậy phương trình vô nghiệm .
Câu b :
\(\sqrt{x^2-1}-\sqrt{9\left(x-1\right)}=0\) ( ĐK : \(x\ge1\) )
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x+1\right)}-3\sqrt{\left(x-1\right)}=0\)
\(\Leftrightarrow\sqrt{\left(x-1\right)}\left(\sqrt{x+1}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x+1}-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)
Vậy \(S=\left\{1;8\right\}\)
Câu c : \(\left(3-\sqrt{2x}\right)\left(2-3\sqrt{2x}\right)=6x-5\) ( ĐK : \(x\ge\dfrac{5}{6}\) )
\(\Leftrightarrow6-9\sqrt{2x}-2\sqrt{2x}+6x=6x-5\)
\(\Leftrightarrow-11\sqrt{2x}+11=0\)
\(\Leftrightarrow-11\left(\sqrt{2x}-1\right)=0\)
\(\Leftrightarrow\sqrt{2x}-1=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\left(TMĐK\right)\)
Vậy \(S=\left\{\dfrac{1}{2}\right\}\)
Chúc bạn học tốt
Câu 1 là \(\left(8x-4\right)\sqrt{x}-1\) hay là \(\left(8x-4\right)\sqrt{x-1}\)?
Câu 1:ĐK \(x\ge\frac{1}{2}\)
\(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
<=> \(\left(4x^2-3x-1\right)+4\left(2x-1\right)\sqrt{x}-2\sqrt{\left(2x-1\right)\left(x+3\right)}\)
<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}\left(2\sqrt{x\left(2x-1\right)}-\sqrt{x+3}\right)=0\)
<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{8x^2-4x-x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)
<=>\(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{\left(x-1\right)\left(8x+3\right)}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)
<=> \(\left(x-1\right)\left(4x+1+2\sqrt{2x-1}.\frac{8x+3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}\right)=0\)
Với \(x\ge\frac{1}{2}\)thì \(4x+1+2\sqrt{2x-1}.\frac{8x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}>0\)
=> \(x=1\)(TM ĐKXĐ)
Vậy x=1
bài 1:
a)\(\left(3-\sqrt{2}\right)\sqrt{7+4\sqrt{3}}\)
\(=\left(3-\sqrt{2}\right)\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=\left(3-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)\(do2>\sqrt{3}\)
\(=6+3\sqrt{3}-2\sqrt{2}-\sqrt{6}\)
b) \(\left(\sqrt{3}+\sqrt{5}\right)\sqrt{7-2\sqrt{10}}\)
\(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\)
\(=\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)do\sqrt{5}>\sqrt{2}\)
\(=\sqrt{15}-\sqrt{6}+5-\sqrt{10}\)
c)\(\left(2+\sqrt{5}\right)\sqrt{9-4\sqrt{5}}\)
\(=\left(2+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(=\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)do\sqrt{5}>2\)
\(=5-4\)
\(=1\left(hđt.3\right)\)
d)\(\left(\sqrt{6}+\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)
\(=\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{8-2\sqrt{15}}\)
\(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)do\sqrt{5}>\sqrt{3}\)
\(=5-3\)
\(=2\)
e)\(\sqrt{2}\left(\sqrt{8}-\sqrt{32}+3\sqrt{18}\right)\)
\(=\sqrt{2}\left(2\sqrt{2}-4\sqrt{2}+9\sqrt{2}\right)\)
\(=2\left(2-4+9\right)\)
\(=2.7=14\)
f)\(\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\)
\(=2-\sqrt{6-2\sqrt{5}}\)
\(=2-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=2-\left(\sqrt{5}-1\right)\)
\(=2-\sqrt{5}+1\)
\(=3-\sqrt{5}\)
g)\(\sqrt{3}-\sqrt{2}\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\sqrt{3}-\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\sqrt{3}-\sqrt{6}-2\)
h) \(\left(\sqrt{2}-\sqrt{3+\sqrt{5}}\right)\sqrt{2}+2\sqrt{5}\)
\(=\left(2-\sqrt{6+2\sqrt{5}}\right)+2\sqrt{5}\)
\(=\left(2-\sqrt{\left(\sqrt{5}+1\right)^2}\right)+2\sqrt{5}\)
\(=2-\left(\sqrt{5}+1\right)+2\sqrt{5}\left(do\sqrt{5}>1\right)\)
\(=2-\sqrt{5}-1+2\sqrt{5}\)
\(=1-\sqrt{5}\)
bài 2)
a) \(\sqrt{4x^2-4x+1}=5\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5\)
\(\Leftrightarrow2x-1=5\)hoặc \(\Leftrightarrow2x-1=-5\)
\(\Leftrightarrow x=3\)hoặc \(\Leftrightarrow x=-2\)
Vậy x = 3 hoặc x = -2
Câu 1 :
Xét điều kiện:\(\hept{\begin{cases}x\ge5\\x\le1\end{cases}}\)(Vô lý)
Vậy pt vô nghiệm
Câu 2 :
\(2\sqrt{x+2}+2\sqrt{x+2}-3\sqrt{x+2}=1\)\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\)
Vậy x=-1
Câu 3 :
\(\sqrt{3x^2-4x+3}=1-2x\)\(\Leftrightarrow3x^2-4x+3=1+4x^2-4x\)
\(\Leftrightarrow x^2=2\Leftrightarrow x=\sqrt{2}\)
Câu 4 :
\(4\sqrt{x+1}-3\sqrt{x+1}=4\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x=15\)
1: =>|2x-1|=5
=>2x-1=5 hoặc 2x-1=-5
=>2x=6 hoặc 2x=-4
=>x=3 hoặc x=-2
2: \(\Leftrightarrow2\sqrt{x-3}+\dfrac{1}{3}\cdot3\sqrt{x-3}-\sqrt{x-3}=4\)
\(\Leftrightarrow\sqrt{x-3}=2\)
=>x-3=4
hay x=7
5: \(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)
=>x-2=0 hoặc x+2=1
=>x=2 hoặc x=-1