Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
\(a,\sqrt[3]{x+1}=x+1\)
\(\Leftrightarrow\left(x+1\right)=\left(x+1\right)^3\)
\(\Leftrightarrow\left(x+1\right)\left[\left(x+1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1+1\right)\left(x+1-1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow x=0\left(h\right)x=-1\left(h\right)x=-2\)
Đặt \(\hept{\begin{cases}\sqrt{x+1}=a\left(a\ge0\right)\\\sqrt{x-2}=b\left(b\ge0\right)\end{cases}}\)
\(\Rightarrow a^2-b^2=3\)
\(1PT\Leftrightarrow\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
\(\Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)
Tới đây tự làm tiếp nhé
ĐKXĐ:....
\(\sqrt{4-\sqrt{1-x}}=\sqrt{2-x}\)
\(\Rightarrow4-\sqrt{1-x}=2-x\)
\(\Rightarrow\sqrt{1-x}=2+x\)
\(\Rightarrow1-x=4+4x+x^2\)
\(\Rightarrow1-x-4-4-x^2=0\)
\(\Rightarrow x^2+x+7=0\)
Đến đây dễ rồi làm nốt nha bạn !
ĐKXĐ:....
\sqrt{4-\sqrt{1-x}}=\sqrt{2-x}4−1−x=2−x
\Rightarrow4-\sqrt{1-x}=2-x⇒4−1−x=2−x
\Rightarrow\sqrt{1-x}=2+x⇒1−x=2+x
\Rightarrow1-x=4+4x+x^2⇒1−x=4+4x+x2
\Rightarrow1-x-4-4-x^2=0⇒1−x−4−4−x2=0
\Rightarrow x^2+x+7=0⇒x2+x+7=0
Đến đây dễ rồi làm nốt nha bạn !
d/ \(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{\left(x-1\right)^2}+\sqrt[3]{x^2-1}=1\)
Đặt \(\hept{\begin{cases}\sqrt[3]{x+1}=a\\\sqrt[3]{x-1}=b\end{cases}\Rightarrow a^3-b^3=2}\)
\(\Rightarrow\hept{\begin{cases}a^3-b^3=2\\a^2+b^2+ab=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)\left(a^2+b^2+ab\right)=2\\a^2+b^2+ab=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a-b=2\\a^2+b^2+ab=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a-b=2\\b^2+2b+1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=-1\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt[3]{x+1}=1\\\sqrt[3]{x-1}=-1\end{cases}\Leftrightarrow}x=0}\)
bài b , lập phương lên
bài c , đặt cái căn đưa về hệ
mới nhìn dc làm dc liền thế thui
\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}=0\)
\(\Leftrightarrow\left(\sqrt[3]{x+1}+1\right)+\sqrt[3]{x+2}+\left(\sqrt[3]{x+3}-1\right)=0\)
\(\Leftrightarrow\frac{x+2}{\sqrt[3]{\left(x+1\right)^2}-\sqrt[3]{x+1}+1}+\frac{x+2}{\sqrt[3]{\left(x+2\right)^4}}+\frac{x+2}{\sqrt[3]{\left(x+3\right)^2}+\sqrt[3]{x+3}+1}\)(liên hợp tử mẫu)
\(\Leftrightarrow\left(x+2\right)\left(\frac{1}{\sqrt[3]{\left(x+1\right)^2}-\sqrt[3]{x+1}+1}+\frac{1}{\sqrt[3]{\left(x+2\right)^4}}+\frac{1}{\sqrt[3]{\left(x+3\right)^2}+\sqrt[3]{x+3}+1}\right)=0\)
\(\Leftrightarrow x+2=0\)( vì biểu thức thứ 2 luôn khác 0)
\(\Leftrightarrow x=-2\)
Vậy...
\(\left(\sqrt[3]{x+1}+\sqrt[3]{x+3}\right)\left(LH\right)=\sqrt[3]{x+2}\left(LH\right)\)
\(\Leftrightarrow2\left(x+2\right)=\sqrt[3]{x+2}\left(Lh\right)\)
=> x=-2 la nghiệm
x khác -2
\(2\sqrt[3]{\left(x+2\right)^2}=-\left(LH\right)\) Vô nghiệm
\(\sqrt[3]{x}+\sqrt[3]{1-x}=1\)
<=> \(x+1-x+3\left(\sqrt[3]{x}+\sqrt[3]{1-x}\right)\left(\sqrt[3]{x\left(1-x\right)}\right)=1\)
<=> \(x\left(1-x\right)=0\)
<=> x = 0 hoặc x = 1
Thử vào đều thỏa mãn
Vậy x = 0 hoặc x = 1