Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-4x\right)^2+2\left(x-2\right)^2=43\)
\(\Leftrightarrow\left(x^2-4x\right)^2+2\left(x^2-4x+4\right)=43\)
Đặt \(t=x^2-4x\) ta được:
\(t^2+2\left(t+4\right)=43\)
\(\Leftrightarrow t^2+2t+8=43\Leftrightarrow t^2+2t-35=0\)
\(\Leftrightarrow\left(t-5\right)\left(t+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t-5=0\\\\t+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=5\\\\t=-7\end{matrix}\right.\)
Xét t = 5:
\(x^2-4x=5\Leftrightarrow x^2-4x-5=0\Leftrightarrow\left(x+1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\\\x=5\end{matrix}\right.\)
Xét t = -7:
\(x^2-4x=-7\Leftrightarrow x^2-4x+7=0\Leftrightarrow\left(x-2\right)^2+3=0\left(vl\right)\)
Vậy, \(S=\left\{-1;5\right\}\)
Ta có
\(\left(x^2-4x\right)^2+2\left(x-2\right)^2=43\)
\(\Leftrightarrow\left(x^2-4x\right)^2+2\left(x^2-4x+4\right)=43\)
Đặt
\(x^2-4x=t\) , ta có phương trình tương đương
\(t^2+2\left(t+4\right)=43\)
\(\Leftrightarrow t^2+2t-35=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-7\\t=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x=-7\\x^2-4x=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+7=0\\x^2-4x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^2+3=0\\\left(x+1\right)\left(x-5\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\varnothing\\\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\end{matrix}\right.\)
Vậy \(x\in\left\{-1;5\right\}\)
\(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow2x\left(x-1\right)=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow2x\left(x-1\right)+\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)=0\)
\(\Rightarrow x=\pm1\)
Giúp tớ mấy câu còn lại đi các cậu, tớ cần gấp lắm ạ ;;-;;
a) Ta có : \(\left(4x+2\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x+2=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}4x=-2\\x^2=-1\left(loai\right)\end{cases}\Leftrightarrow}x=-2}\)
\(\left(3x+2\right).\left(x^2-1\right)=\left[\left(3x\right)^2-2^2\right].\left(x+1\right)\)
\(\Rightarrow\left(3x+2\right).\left(x-1\right).\left(x+1\right)-\left(3x-2\right).\left(3x+2\right).\left(x+1\right)=0\)
\(\Rightarrow\left(3x+2\right).\left(x+1\right).\left[x-1-3x+2\right]=0\)
\(\Rightarrow\left(3x+2\right).\left(x+1\right).\left(-2x+1\right)=0\)
đến đây dễ rồi :))
\(\left(x^2+7x+12\right).\left(4x-16\right)-\left(x+3\right)\left(x^2-5x+4\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x^2+3x+4x+12\right).4.\left(x-4\right)-\left(x+3\right)\left(x^2-x-4x+4\right)\left(x-4\right)=0\)
\(\Leftrightarrow4\left(x+4\right)\left(x+3\right)\left(x-4\right)-\left(x+3\right)\left(x-4\right)\left(x+4\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-4\right)\left(x+3\right)\left(4-x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-4\right)\left(x+3\right)\left(8-x\right)=0\)
\(\Leftrightarrow\frac{\orbr{\begin{cases}x+4=0\\x-4=0\end{cases}}}{\orbr{\begin{cases}x+3=0\\8-x=0\end{cases}}}\Leftrightarrow\frac{\orbr{\begin{cases}x=-4\\x=4\end{cases}}}{\orbr{\begin{cases}x=-3\\x=8\end{cases}}}\)