Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2x-28+8-\sqrt{2x^2+4x+8}=0\)
\(x^2+2x-28+\frac{64-2x^2-4x-8}{8+\sqrt{2x^2+4x+8}}=0\)
\(x^2+2x-28+\frac{-2\left(x^2+2x-28\right)}{8+\sqrt{2x^2+4x+8}}=0\)
\(\left(x^2+2x-28\right)\left(1-\frac{2}{8+\sqrt{2x^2+4x+8}}\right)=0\)
mà \(1-\frac{2}{8+\sqrt{2x+4x+8}}\ne0\Rightarrow x^2+2x-28=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1-\sqrt{29}\\x=-1+\sqrt{29}\end{cases}}\)
a/ Sửa đề: \(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)
Đặt \(\hept{\begin{cases}\sqrt{4x+1}=a\ge0\\\sqrt{3x-2}=b\ge0\end{cases}}\)
\(\Rightarrow a^2-b^2=x+3\)
\(\Rightarrow a-b=\frac{a^2-b^2}{5}\)
\(\Leftrightarrow\left(a-b\right)\left(\frac{a+b}{5}-1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\a=5-b\end{cases}}\)
Với \(a=b\)
\(\Rightarrow\sqrt{4x+1}=\sqrt{3x-2}\)
\(\Leftrightarrow x=-3\)
Với \(a=5-b\)
\(\Rightarrow\sqrt{4x+1}=5-\sqrt{3x-2}\)
Trường hợp thứ 2 chưa kịp tính cái lỡ tay bấm rồi. Mà thôi cũng đơn giản nên tự làm trường hợp đó nha.
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
cho mình hỏi hai ý đầu thôi, hai ý sau mình giải ra rồi. Thanks Zero ~
\(pt\Leftrightarrow\left[\left(4x^3-x+3\right)^3-\frac{3}{4}\right]-\left(x^3+\frac{3}{4}\right)=0\)
\(\Leftrightarrow\left(4x^3-x+3-\sqrt[3]{\frac{3}{4}}\right)\left[\left(4x^3-x+3\right)^2+\sqrt[3]{\frac{3}{4}}\left(4x^3-x+3\right)+\left(\sqrt[3]{\frac{3}{4}}\right)^2\right]-\frac{4x^3+3}{4}=0\left(1\right)\)
Đặt \(A=\left(4x^3-x+3\right)^2+\sqrt[3]{\frac{3}{4}}\left(4x^3-x+3\right)+\left(\sqrt[3]{\frac{3}{4}}\right)^2=0\)
Dễ chứng minh \(A\ge\frac{3}{4}\cdot\left(\sqrt[3]{\frac{3}{4}}\right)^2>\frac{1}{2}\)
\(\left(1\right)\Leftrightarrow\left[\left(4x^3+3\right)-\left(x+\sqrt[3]{\frac{3}{4}}\right)\right]A-\frac{4x^3+3}{4}=0\)
\(\Leftrightarrow\left[\left(4x^3+3\right)-\frac{x^3+\frac{3}{4}}{B}\right]A-\frac{4x^3+3}{4}=0\)
\(\Leftrightarrow\left(4x^3+3\right)\left(A-\frac{A}{4B}-\frac{1}{4}\right)=0\)
Với \(B=x^2-\sqrt[3]{\frac{3}{4}}x+\left(\sqrt[3]{\frac{3}{4}}\right)^2\ge\frac{3}{4}\cdot\left(\sqrt[3]{\frac{3}{4}}\right)^2\Rightarrow4B>2\)
Ta chứng minh \(A-\frac{A}{4B}-\frac{1}{4}>0\)
\(\Leftrightarrow A\cdot\frac{4B-1}{4B}-\frac{1}{4}>0\). Do \(4B>2\Rightarrow\frac{4B-1}{4B}>\frac{1}{2};A>\frac{1}{2}\)
Do đó pt có nghiệm duy nhất là \(4x^3+3=0\Leftrightarrow x=-\sqrt[3]{\frac{3}{4}}\)