Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra , ta có :
\(\frac{x+2}{2014}+\frac{x+1}{2015}=\frac{x+3}{2013}+\frac{x+4}{2012}\)
\(\Leftrightarrow\left(\frac{x+2}{2014}+1\right)+\left(\frac{x+1}{2015}+1\right)=\left(\frac{x+3}{2013}+1\right)+\left(\frac{x+4}{2012}+1\right)\)
\(\Leftrightarrow\left(\frac{x+2+2014}{2014}\right)+\left(\frac{x+1+2015}{2015}\right)=\left(\frac{x+3+2013}{2013}\right)+\left(\frac{x+4+2012}{2012}\right)\)
\(\Leftrightarrow\frac{x+2016}{2014}+\frac{x+2016}{2015}=\frac{x+2016}{2013}+\frac{x+2016}{2012}\)
\(\Leftrightarrow\frac{x+2016}{2014}+\frac{x+2016}{2015}-\frac{x+2016}{2013}-\frac{x+2016}{2012}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2012}\right)=0\)
Vì \(\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2012}\right)>0\)
\(\Leftrightarrow x+2016=0\)
\(\Leftrightarrow x=-2016\)
Vậy \(x=-2016\)
Tập nghiệm của phương trình là \(S=\left\{-2016\right\}\)
Chúc bạn học tốt =))
\(\frac{x+2}{2014}+\frac{x+1}{2015}=\frac{x+3}{2013}+\frac{x+4}{2012}\)
\(\frac{x+2}{2014}+1+\frac{x+1}{2015}+1=\frac{x+3}{2013}+1+\frac{x+4}{2012}+1\)
\(\frac{x+2+2014}{2014}+\frac{x+1+2015}{2015}=\frac{x+3+2013}{2013}+\frac{x+4+2012}{2012}\)
\(\frac{x+2016}{2014}+\frac{x+2016}{2015}=\frac{x+2016}{2013}+\frac{x+2016}{2012}\)
\(\frac{x+2016}{2014}+\frac{x+2016}{2015}-\frac{x+2016}{2013}-\frac{x+2016}{2012}=0\)
\(\left(x+2016\right).\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2012}\right)=0\)
MÀ \(\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2012}\right)\ne0\)
\(\Rightarrow x+2016=0\)
\(\Rightarrow x=-2016\)
Cộng 2 vế với 2 ta có :
5-x^2/2012 + 1 = (4-x^2/2013+1) - (x^2-3/2014-1)
<=> 2017-x^2/2012 = 2017-x^2/2013 - x^2-2017/2014 = 2017-x^2/2013+ 2017-x^2/2014
<=> 2017-x^2/2013 + 2017-x^2/2014 - 2017-x^2/2012 = 0
<=> (2017-x^2).(1/2013+1/2014-1/2012) = 0
<=> 2017-x^2 = 0 ( vì 1/2013+1/2014-1/2012 khác 0 )
<=> x = \(\sqrt{2017}\)
k mk nha
\(\Leftrightarrow\frac{5-x^2}{2012}+1=\frac{4-x^2}{2013}+1+\frac{3-x^2}{2014}+1\)
\(\Leftrightarrow\frac{2017-x^2}{2012}-\frac{2017-x^2}{2013}-\frac{2017-x^2}{2014}=0\)
\(\Leftrightarrow\left(2017-x^2\right)\left(\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)
\(\Leftrightarrow2017-x^2=0\)
\(\Leftrightarrow x^2=2017\)
\(\Leftrightarrow x=\sqrt{2017}\)
V...\(S=\left\{\sqrt{2017}\right\}\)
\(\frac{x+1}{2014}+\frac{x+2}{2013}+\frac{x+3}{2012}+\frac{x+2045}{10}=0\)
\(\Leftrightarrow\frac{x+1}{2014}+1+\frac{x+2}{2013}+1+\frac{x+3}{2012}+1+\frac{x+2045}{10}-3=0\)
\(\Leftrightarrow\frac{x+1+2014}{2014}+\frac{x+2+2013}{2013}+\frac{x+3+2012}{2012}+\frac{x+2045-3.10}{10}=0\)
\(\Leftrightarrow\frac{x+2015}{2014}+\frac{x+2015}{2013}+\frac{x+2015}{2012}+\frac{x+2015}{10}=0\)
\(\Leftrightarrow\left(x+2015\right).\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}+\frac{1}{10}\right)=0\)
Vì \(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}+\frac{1}{10}\ne0\)
Nên x + 2015 = 0 <=> x = -2015
Vậy x = -2015
\(\frac{x-1}{2013}+\frac{x-2}{2012}+\frac{x-3}{2011}=\frac{x-4}{2010}+\frac{x-5}{2009}+\frac{x-6}{2008}\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2013}-1\right)+\left(\frac{x-2}{2012}-1\right)+\left(\frac{x-3}{2011}-1\right)=\left(\frac{x-4}{2010}-1\right)+\left(\frac{x-5}{2009}-1\right)+\left(\frac{x-6}{2008}-1\right)\)
\(\Leftrightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}+\frac{x-2013}{2011}=\frac{x-2014}{2010}+\frac{x-2014}{2009}+\frac{x-2014}{2008}\)
\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
tự làm nốt~
kudo shinichi làm sai ở chỗ:
\(\frac{x-2013}{2011}\)phải là \(\frac{x-2014}{2011}\)mới đúng nhé
a,\(\Leftrightarrow\left(\frac{1-x}{2013}+1\right)=\left(\frac{2-x}{2012}+1\right)-\left(1-\frac{x}{2014}\right)\)
\(\Leftrightarrow\frac{2014-x}{2013}=\frac{2014-x}{2012}-\frac{2014-x}{2014}\)
\(\Leftrightarrow\frac{2014-x}{2013}-\frac{2014-x}{2012}+\frac{2014-x}{2014}\)=0
\(\Leftrightarrow\left(2014-x\right)\left(\frac{1}{2013}-\frac{1}{2012}+\frac{1}{2014}\right)=0\)
\(\Leftrightarrow x=2014\left(do.cái.còn.lại.\ne0\right)\)
b,tương tự +1 vào cái thứ nhất ,+1 vào cái thứ 2,1- vào cái thứ 3 được x=2013
\(\frac{2-x}{2012}-2=\frac{1-x}{2013}-\frac{x}{1007}\)
\(\Leftrightarrow\frac{2-x}{2012}-\frac{1-x}{2013}+\frac{x}{1007}-2=0\)
\(\Leftrightarrow\left(\frac{2-x}{2012}+1\right)-\left(\frac{1-x}{2013}+1\right)+\left(\frac{x}{1007}-2\right)=0\)
\(\Leftrightarrow\frac{2014-x}{2012}-\frac{2014-x}{2013}+\frac{x-2014}{1007}=0\)
\(\Leftrightarrow\left(2014-x\right)\left(\frac{1}{2012}-\frac{1}{2013}-\frac{1}{1007}\right)=0\Leftrightarrow2014-x=0\Leftrightarrow x=2014\)