K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

\(\frac{15}{2}\left(30x^2-4x\right)=2004\left(\sqrt{30060x+1}+1\right)\)

\(\Leftrightarrow5\left(15x^2-2x\right)=668\left(\sqrt{30060x+1}+1\right)\)

\(\Leftrightarrow75x^2-10x-1340008=668\left(\sqrt{30060x+1}-2005\right)\)

\(\Leftrightarrow\left(5x+668\right)\left(15x-2006\right)=\frac{1338672\left(15x-2006\right)}{\left(\sqrt{30060x+1}+2005\right)}\)

\(\Leftrightarrow\left(15x-2006\right)\left(5x+668-\frac{1338672}{\left(\sqrt{30060x+1}+2005\right)}\right)=0\)

Tới đây tự làm tiếp nhá.

câu này chỉ cần đưa ề đối xúng là được thôi

\(\Leftrightarrow\left(15x\right)^2-30x=2004\sqrt{30060x+1}+2004\)

\(\Leftrightarrow\left(15x-1\right)^2=2004\sqrt{30060x+1}+2005\)

đặt \(\sqrt{30060x+1}=15y-1\)

\(\Leftrightarrow\hept{\begin{cases}\left(15x-1\right)^2=2004\left(15y-1\right)+2005\\\left(15y-1\right)^2=30060x+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(15x-1\right)^2=30060y+1\\\left(15y-1\right)^2=30060x+1\end{cases}}\)

đến đây thì lấy cái đầu trừ cái thứ 2 là ra

29 tháng 7 2017

gõ lại đề 

6 tháng 8 2018

X = 0

100% đúng kq

11 tháng 12 2019

x=0

nhanh nhất có thể

28 tháng 5 2018

\(DKXD:x>0\)

\(PT\Leftrightarrow\sqrt{x+\frac{3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}-2\)

\(\Leftrightarrow\frac{x+\frac{3}{x}-4}{\sqrt{x+\frac{3}{x}}+2}=\frac{x^2-4x-4+7}{2\left(x+1\right)}\)

\(\Leftrightarrow\frac{x^2-4x+3}{x\sqrt{x+\frac{3}{x}}+2x}-\frac{x^2-4x+3}{2\left(x+1\right)}=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(\frac{1}{x\sqrt{x+\frac{3}{x}}+2x}-\frac{1}{2\left(x+1\right)}\right)=0\)

\(\Rightarrow x=1\text{ }or\text{ }x=3\text{ }or\text{ }x\sqrt{x+\frac{3}{x}}=2\text{ }\)

\(\Leftrightarrow x=1\text{ }or\text{ }x=3\text{ }or\text{ }x^3+3x-4=0\)

\(\Leftrightarrow x=1\text{ }or\text{ }x=3\text{ }or\text{ }x^3+3x-4=0\)

\(\Leftrightarrow x=1\text{ }or\text{ }x=3\text{ }or\left(\text{ }x-1\right)\left(x^2+x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

Vậy PT có 2 nghiệm \(x=1;x=3\)

29 tháng 5 2018

tai sao cho xcan bac hai lai bang 2

18 tháng 7 2015

ĐK: \(x\ge-2\)

\(pt\Leftrightarrow\frac{x+5-\left(x+2\right)}{\sqrt{x+5}+\sqrt{x+2}}.\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)=3\)

\(\Leftrightarrow3.\frac{1+\sqrt{x+2}.\sqrt{x+5}}{\sqrt{x+2}+\sqrt{x+5}}=3\)

\(\Leftrightarrow1+\sqrt{x+2}\sqrt{x+5}=\sqrt{x+2}+\sqrt{x+5}\)

\(\Leftrightarrow\left(\sqrt{x+2}-1\right)\left(\sqrt{x+5}-1\right)=0\)

\(\Leftrightarrow\sqrt{x+2}=1\text{ hoặc }\sqrt{x+5}=1\)

\(\Leftrightarrow x=-1\text{ (nhận) hoặc }x=-4\text{ (loại)}\)

Vậy tập nghiệm của pt là: \(S=\left\{1\right\}\)

 

NV
9 tháng 4 2019

a/ Bạn tự giải

b/ \(\Delta'=-m^2+2m\)

Để pt có nghiệm thì \(\Delta'\ge0\Rightarrow-m^2+2m\ge0\Rightarrow0\le m\le2\)

Khi đó theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m^2-2m+1=\left(m-1\right)^2\end{matrix}\right.\)

Xét \(A=\left|x_2-x_1\right|\Rightarrow A^2=\left(x_2-x_1\right)^2\)

\(A^2=x_1^2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(A^2=4-4\left(m-1\right)^2\le4\)

\(\Rightarrow A\le2\) (đpcm)

Dấu "=" xảy ra khi \(m-1=0\Rightarrow m=1\)