K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2023

\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ ĐKXĐ:x\ne-1;x\ne2\\ \dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow\dfrac{2\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{1\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ \Rightarrow2x-4-x-1=3x-11\\ \Leftrightarrow2x-x-3x=-11+4+1\\ \Leftrightarrow-2x=-6\\ \Leftrightarrow x=3\left(tm\right)\)

Vậy \(S=\left\{3\right\}\)

=>2x-4-x-1=3x-11

=>3x-11=x-5

=>2x=6

=>x=3

22 tháng 4 2017

Giải bài 52 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 52 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

24 tháng 8 2018

a. (x + 2)(x2 – 3x + 5) = (x + 2)x2

⇔ (x + 2)(x2 – 3x + 5) – (x + 2)x2 = 0

⇔ (x + 2)[(x2 – 3x + 5) – x2] = 0

⇔ (x + 2)(\(x^2\) – 3x + 5 – \(x^2\)) = 0

⇔ (x + 2)(5 – 3x) = 0

⇔ x + 2 = 0 hoặc 5 – 3x = 0

x + 2 = 0 ⇔ x = -2

5 – 3x = 0 ⇔ x = \(\dfrac{5}{3}\)

Vậy phương trình có nghiệm x = -2 hoặc x =\(\dfrac{5}{3}\)

c.\(2x^2\) – x = 3 – 6x

\(2x^2\) – x + 6x – 3 = 0

⇔ (\(2x^2\) + 6x) – (x + 3) = 0

⇔ 2x(x + 3) – (x + 3) = 0

⇔ (2x – 1)(x + 3) = 0

⇔ 2x – 1 = 0 hoặc x + 3 = 0

2x – 1 = 0 ⇔ x = 1/2

x + 3 = 0 ⇔ x = -3

Vậy phương trình có nghiệm x = \(\dfrac{1}{2}\) hoặc x = -3

22 tháng 4 2017

a) 1x13x2x31=2xx2+x+11x−1−3x2x3−1=2xx2+x+1

Ta có: x31=(x1)(x2+x+1)x3−1=(x−1)(x2+x+1)

=(x1)[(x+12)2+34]=(x−1)[(x+12)2+34] cho nên x3 – 1 ≠ 0 khi x – 1 ≠ 0⇔ x ≠ 1

Vậy ĐKXĐ: x ≠ 1

Khử mẫu ta được:

x2+x+13x2=2x(x1)2x2+x+1=2x22xx2+x+1−3x2=2x(x−1)⇔−2x2+x+1=2x2−2x

4x23x1=0⇔4x2−3x−1=0

4x(x1

21 tháng 2 2019

giải luôn ko chép đề nhé

a,

<=>(3x-5)(x-1)=(3x+1)(x-2)-3(x-1)

<=>3x^2-8x+5=3x^2-5x-2-3x+3

<=>3x^2-8x-3x^2+5x+3x=-5+3

<=>0x=-2

vậy s=\(\varnothing\)

21 tháng 2 2019

a, 

vậy s={\(\varnothing\)}

b,

<=>x+3+2(x-1)=7

<=>x+3+2x-2=7

<=>3x+3=7+2

<=>3x+3=9

<=>3x=9-3

<=>3x=6

<=>x=2

cậy s={2}

a: \(\Leftrightarrow1-x+3x+3=2x+3\)

=>2x+4=2x+3(vô lý)

b: \(\Leftrightarrow\left(x+2\right)^2-2x+3=x^2+10\)

\(\Leftrightarrow x^2+4x+4-2x+3=x^2+10\)

=>4x+7=10

hay x=3/4

d: \(\Leftrightarrow\left(-2x+5\right)\left(3x-1\right)+3\left(x-1\right)\left(x+1\right)=\left(x+2\right)\left(1-3x\right)\)

\(\Leftrightarrow-6x^2+2x+15x-5+3\left(x^2-1\right)=\left(x+2\right)\left(1-3x\right)\)

\(\Leftrightarrow-6x^2+17x-5+3x^2-3=x-3x^2+2-6x\)

\(\Leftrightarrow-3x^2+17x-8=-3x^2-5x+2\)

=>22x=10

hay x=5/11

a: \(\Leftrightarrow x^3-3x^2+3x-1-x^3+2x^2-x=5x\left(2-x\right)-11\left(x+2\right)\)

=>-x^2+2x-1=10x-5x^2-11x-22

=>-x^2+2x-1=-5x^2-x-22

=>4x^2+3x+21=0

=>PTVN

b: \(\Leftrightarrow\left(x+10\right)\left(x+4\right)+3\left(x+4\right)\left(x-2\right)=4\left(x+10\right)\left(x-2\right)\)

=>x^2+14x+40+3(x^2+2x-8)=4(x^2+8x-20)

=>x^2+14x+40+3x^2+6x-24=4x^2+32x-80

=>20x+16=32x-80

=>-12x=-96

=>x=8

c: \(\Leftrightarrow6\left(x-3\right)+7\left(x-5\right)=13x+4\)

=>6x-18+7x-35=13x+4

=>-53=4(loại)

d: =>3(2x-1)-5(x-2)=3(x+7)

=>6x-3-5x+10=3x+21

=>3x+21=x+7

=>x=-7

e: =>x^3-6x^2+12x-8-x^3-3x^2-3x-1=-9x^2+1

=>-9x^2+9x-9=-9x^2+1

=>9x=10

=>x=10/9

b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)

=>(7x+10)(x-3)=0

hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)

d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)

\(\Leftrightarrow x^2+14x+68=0\)

hay \(x\in\varnothing\)