Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6x4+7x3-36x2-7x+6=0
<=> 6x4-2x3+9x3-3x2-33x2+11x-18x+6=0
<=> 2x3(3x-1)+3x2(3x-1)-11x(3x-1)-6(3x-1)=0
<=> (3x-1)(2x3+3x2-11x-6)=0
<=>(3x-1)(2x3-4x2+7x2-14x+3x-6)=0
<=>(3x-1)[2x2(x-2)+7x(x-2)+3(x-2)]=0
<=>(3x-1)(x-2)(2x2+7x+3)=0
<=>(3x-1)(x-2)(2x2+6x+x+3)=0
<=>(3x-1)(x-2)[2x(x+3)+(x+3)]=0
<=>(3x-1)(x-2)(x+3)(2x+1)=0
th1: 3x+1=0 <=> x=\(-\frac{1}{3}\)
th2: x-2=0 <=> x=2
th3: x+3=0 <=> x=-3
th4: 2x+1=0 <=> x=-\(\frac{1}{2}\)
\(6x^4-5x^3-38x^2-5x+6=0\)
\(\Leftrightarrow6x^4-12x^3+17x^3-34^2-4x^2+8x-3x+6=0\)
\(\Leftrightarrow6x^3\left(x-2\right)+17x^2\left(x-2\right)-4x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(6x^3+18x^2-4x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(6x^3+18x^2-x^2-3x-x-3=0\right)\)
\(\Leftrightarrow\left(x-2\right)\left[6x^2\left(x+3\right)-x\left(x+3\right)-\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(6x^2-x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(6x^2-3x+2x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left[6x\left(x-\frac{1}{2}\right)+2\left(x-\frac{1}{2}\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x-\frac{1}{2}\right)\left(6x+2\right)=0\)
Xét thấy x = 0 không thỏa mãn pt
Ta có : \(6x^4+7x^3-36x^2+7x+6=0\)
\(\Leftrightarrow x^2\left(6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}\right)=0\)
\(\Leftrightarrow6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}=0\)
\(\Leftrightarrow6\left(x^2+\frac{1}{x^2}\right)+7\left(x+\frac{1}{x}\right)-36=0\)
\(\Leftrightarrow6\left(x+\frac{1}{x}\right)^2-7\left(x+\frac{1}{x}\right)-36-12=0\)
\(\Leftrightarrow6\left(x+\frac{1}{x}\right)^2-7\left(x+\frac{1}{x}\right)-48=0\)
Đặt \(x+\frac{1}{x}=a\)
\(pt\Leftrightarrow6a^2-7a-48=0\)
\(\Leftrightarrow6\left(a^2-\frac{7}{6}a-8\right)=0\)
\(\Leftrightarrow a^2-\frac{7}{6}a-8=0\)
\(\Leftrightarrow a^2-2\cdot a\cdot\frac{7}{12}+\frac{49}{144}-\frac{1201}{144}=0\)
\(\Leftrightarrow\left(a-\frac{7}{12}\right)^2=\left(\frac{\pm\sqrt{1201}}{12}\right)^2\)
\(\Leftrightarrow a=\frac{\pm\sqrt{1201}+7}{12}\)
\(\Leftrightarrow x+\frac{1}{x}=\frac{\pm\sqrt{1201}+7}{12}\)
Giải nốt nha bạn. Nghiệm hơi xấu
Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)
\(6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}=0\)
\(\Leftrightarrow6\left(x^2+\frac{1}{x^2}\right)+7\left(x+\frac{1}{x}\right)-36=0\)
Đặt \(x+\frac{1}{x}=a\) (\(\left|a\right|\ge2\)) \(\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)
\(6\left(a^2-2\right)+7a-36=0\)
\(\Leftrightarrow6a^2+7a-48=0\)
Nghiệm xấu
(6x4-12x3)+(193-38x2)+(2x2-4x)-(3x-6)=0
6x^3(x-2)+19x^2(x-2)+2x(x-2)-3(x-2)=0
(x-2)(6x^3+19x^2+2x-3)=0
(x-2)[(6x^3+18x^2)+(x^2+3x)-(x+3)]=0
(x-2)(x+3)(6x^2+x-1)=0
(x-2)(x+3)[(6x^2+3x)-(2x+1)]=0
(x-2)(x+3)(2x+1)(3x-1)=0
⇒ x=2
x=-3
x=-1/2
x=1/3
Cái này t dùng máy tính
\(\left(x-2\right)\left(x+3\right)\left(2x+1\right)\left(3x-1\right)=0\)
Đến đây thì pt có 4 nghiệm:\(x=2;-3;-\frac{1}{2};\frac{1}{3}\)
Vậy....
Yêu cầu giải không dùng máy tính.