Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{x}{4}=t\)
\(2sin^22t-3cost=0\)
\(\Leftrightarrow8sin^2t.cos^2t-3cost=0\)
\(\Leftrightarrow8cos^2t\left(1-cos^2t\right)-3cost=0\)
\(\Leftrightarrow-8cos^4t+8cos^2t-3cost=0\)
\(\Leftrightarrow-cost\left(8cos^3t-8cost+3\right)=0\)
\(\Leftrightarrow cost\left(2cost-1\right)\left(4cos^2t+2cost-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cost=0\\cost=\dfrac{1}{2}\\cost=\dfrac{-1+\sqrt{13}}{4}\\cost=\dfrac{-1-\sqrt{13}}{4}< -1\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
1: \(\Leftrightarrow4\cdot\dfrac{1+\cos2x}{2}-6\cdot\dfrac{1-\cos2x}{2}+5\sin2x-4=0\)
\(\Leftrightarrow2+2\cos2x-3+3\cos2x+5\sin2x-4=0\)
\(\Leftrightarrow5\sin2x+5\cos2x=5\)
\(\Leftrightarrow\cos2x+\sin2x=1\)
\(\Leftrightarrow\sqrt{2}\cdot\sin\left(2x+\dfrac{\Pi}{4}\right)=1\)
\(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{\Pi}{4}=\dfrac{\Pi}{4}+k2\Pi\\2x+\dfrac{\Pi}{4}=\dfrac{3\Pi}{4}+k2\Pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=k\Pi\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)
2: \(\Leftrightarrow\sqrt{3}\cdot\dfrac{1+\cos2x}{2}+\sin2x-\sqrt{3}\cdot\dfrac{1-\cos2x}{2}-1=0\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}\cos2x+\sin2x+\sqrt{3}\cdot\dfrac{\cos2x-1}{2}-1=0\)
\(\Leftrightarrow\sin2x+\dfrac{\sqrt{3}}{2}\cos2x+\dfrac{\sqrt{3}}{2}\cos2x-\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}-2}{2}=0\)
\(\Leftrightarrow\sin2x+\sqrt{3}\cos2x=\dfrac{\sqrt{3}-\sqrt{3}+2}{2}=1\)
\(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{3}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{\Pi}{3}=\dfrac{\Pi}{6}+k2\Pi\\2x+\dfrac{\Pi}{3}=\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{12}\Pi+k\Pi\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)
Đk:\(cosx\ne\dfrac{1}{2}\) \(\Rightarrow cosx\ne\pm\dfrac{\pi}{3}+k2\pi\);\(k\in Z\)
Pt \(\Leftrightarrow\dfrac{\left(2-\sqrt{3}\right)cosx-\left[1-cos\left(x-\dfrac{\pi}{2}\right)\right]}{2cosx-1}=1\)
\(\Rightarrow\left(2-\sqrt{3}\right)cosx-1+cos\left(\dfrac{\pi}{2}-x\right)=2cosx-1\)
\(\Leftrightarrow-\sqrt{3}cosx+sinx=0\)
\(\Leftrightarrow2sin\left(x-\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow x=\dfrac{\pi}{3}+k\pi\) (\(k\in Z\)) kết hợp với đk \(\Rightarrow x=\dfrac{2\pi}{3}+k2\pi\)(\(k\in Z\))
ĐKXĐ: \(cosx\ne\dfrac{1}{2}\Rightarrow x\ne\pm\dfrac{\pi}{3}+k2\pi\)
\(\left(2-\sqrt{3}\right)cosx+cos\left(x-\dfrac{\pi}{2}\right)-1=2cosx-1\)
\(\Leftrightarrow sinx-\sqrt{3}cosx=0\)
\(\Leftrightarrow tanx=\sqrt{3}\)
\(\Rightarrow x=\dfrac{\pi}{3}+k\pi\)
Kết hợp ĐKXĐ \(\Rightarrow x=-\dfrac{2\pi}{3}+k2\pi\)
3.3 d)
\(\sin8x-\cos6x=\sqrt{3}\left(\sin6x+\cos8x\right)\\ \Leftrightarrow\sin8x-\sqrt{3}\cos8x=\sqrt{3}\sin6x+\cos6x\\ \Leftrightarrow\sin\left(8x-\dfrac{\pi}{3}\right)=\sin\left(6x+\dfrac{\pi}{6}\right)\\ \Leftrightarrow\left[{}\begin{matrix}8x-\dfrac{\pi}{3}=6x+\dfrac{\pi}{6}+k2\pi\\8x-\dfrac{\pi}{3}=\pi-\left(6x+\dfrac{\pi}{6}\right)+k2\pi\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{12}+k\dfrac{\pi}{7}\end{matrix}\right.\)
3.4 a)
\(2sin\left(x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(\dfrac{\pi}{2}-x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(-x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \)
Chia hai vế cho \(\sqrt{2^2+4^2}=2\sqrt{5}\)
Ta được:
\(\dfrac{1}{\sqrt{5}}cos\left(x-\dfrac{\pi}{4}\right)+\dfrac{2}{\sqrt{5}}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3}{4}\\ \)
Gọi \(\alpha\) là góc có \(cos\alpha=\dfrac{1}{\sqrt{5}}\)và \(sin\alpha=\dfrac{2}{\sqrt{5}}\)
Phương trình tương đương:
\(cos\left(x-\dfrac{\pi}{4}-\alpha\right)=\dfrac{3}{4}\\ \Leftrightarrow x=\pm arscos\left(\dfrac{3}{4}\right)+\dfrac{\pi}{4}+\alpha+k2\pi\)
1. \(4\cos^2x-6\sin^2x+5\sin2x-4=0\)
\(\Leftrightarrow4\cos^2x-6\sin^2x+10\sin x\cos x-4\left(\cos^2x+\sin^2x\right)=0\)
\(\Leftrightarrow10\sin x\cos x-10\sin^2x=0\)
\(\Leftrightarrow10\sin x\left(\cos x-\sin x\right)=0\)
2. \(\sqrt{3}\cos^2x+2\sin x\cos x-\sqrt{3}\sin^2x-1=0\)
\(\Leftrightarrow\left(\sqrt{3}\cos^2x+\sin x\cos x\right)+\left(\sin x\cos x-\sqrt{3}\sin^2x\right)-1=0\)
\(\Leftrightarrow2\cos x\left(\dfrac{\sqrt{3}}{2}\cos x+\dfrac{1}{2}\sin x\right)+2\sin x\left(\dfrac{1}{2}\cos x-\dfrac{\sqrt{3}}{2}\sin x\right)-1=0\)
\(\Leftrightarrow2\cos x.\cos\left(\dfrac{\Pi}{6}-x\right)+2\sin x.\sin\left(\dfrac{\Pi}{6}-x\right)-1=0\)
\(\Leftrightarrow\cos\dfrac{\Pi}{6}+\cos\left(2x-\dfrac{\Pi}{6}\right)+\cos\left(2x-\dfrac{\Pi}{6}\right)-\cos\dfrac{\Pi}{6}-1=0\)
\(\Leftrightarrow\cos\left(2x-\dfrac{\Pi}{6}\right)=\dfrac{1}{2}\)
3. \(2\sin^22x-3\sin2x\cos2x+\cos^22x=2\)
\(\Leftrightarrow2\sin^22x-3\sin2x\cos2x+\cos^22x-2\left(\sin^22x+\cos^22x\right)=0\)
\(\Leftrightarrow3\sin2x\cos2x+\cos^22x=0\)
\(\Leftrightarrow\cos2x\left(3\sin2x+\cos2x\right)=0\)
-TH1: ...
- TH2: \(\cos2x=-3\sin2x\) mà \(\cos^22x+\sin^22x=1\) suy ra ...
4. \(4\cos^2\dfrac{x}{2}+\dfrac{1}{2}\sin x+3\sin^2\dfrac{x}{2}=3\)
\(\Leftrightarrow4\cos^2\dfrac{x}{2}+\dfrac{1}{2}\sin x+3\sin^2\dfrac{x}{2}-3\left(\cos^2\dfrac{x}{2}+\sin^2\dfrac{x}{2}\right)=0\)
\(\Leftrightarrow\cos^2\dfrac{x}{2}+\dfrac{1}{2}\sin x=0\)
\(\Leftrightarrow\dfrac{1+\cos x}{2}+\dfrac{1}{2}\sin x=0\)
\(\Leftrightarrow\cos x+\sin x=-1\)
Bài 3. a) cos (x - 1) = ⇔ x - 1 = ±arccos + k2π
⇔ x = 1 ±arccos + k2π , (k ∈ Z).
b) cos 3x = cos 120 ⇔ 3x = ±120 + k3600 ⇔ x = ±40 + k1200 , (k ∈ Z).
c) Vì = cos nên ⇔ cos() = cos ⇔ = ± + k2π ⇔
d) Sử dụng công thức hạ bậc (suy ra trực tiếp từ công thức nhan đôi) ta có
⇔ ⇔
⇔ ⇔
a) \(x=-45^0+k90^0,k\in\mathbb{Z}\)
b) \(x=-\dfrac{\pi}{6}+k\pi,k\in\mathbb{Z}\)
c) \(x=\dfrac{3\pi}{4}+k2\pi,k\in\mathbb{Z}\)
d) \(x=300^0+k540^0,k\in\mathbb{Z}\)
\(\Leftrightarrow2cos2x.cos\left(\dfrac{\pi}{6}\right)-2sin2x.sin\left(\dfrac{\pi}{6}\right)+2sin2x-1=0\)
\(\Leftrightarrow\sqrt{3}cos2x+sin2x=1\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x=\dfrac{1}{2}\)
\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\2x-\dfrac{\pi}{6}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)