Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:x\ne0\)
\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)\(\Leftrightarrow8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)\left(x^2+\dfrac{1}{x^2}-\left(x+\dfrac{1}{x}\right)^2\right)=\left(x+4\right)^2\)\(\Leftrightarrow8\left(x+\dfrac{1}{x}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)=\left(x+4\right)^2\)
\(\Leftrightarrow16=\left(x+4\right)^2\Leftrightarrow\)\(\left[{}\begin{matrix}x=-8\\x=0\end{matrix}\right.\) \(\Rightarrow x=-8\) (vì \(x\ne0\))
\(S=\left\{-8\right\}\)
Đặt \(x+\dfrac{1}{x}=a\)
ta có \(\left(x+\dfrac{1}{x}\right)^2=a^2\Rightarrow x^2+2+\dfrac{1}{x^2}=a^2\Rightarrow x^2+\dfrac{1}{x^2}=a^2-2\)
ta có \(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)\(\Leftrightarrow8a^2+4.\left(a^2-2\right)^2-4\left(a^2-2\right)a^2=\left(x+4\right)^2\)
\(\Leftrightarrow8a^2+4\left(a^4-4a^2+4\right)-4a^4+8a^2=\left(x+4\right)^2\)
\(\Leftrightarrow8a^2+4a^4-16a^2+16-4a^4+8a^2-\left(x+4\right)^2=0\)
\(\Leftrightarrow\left(x+4\right)^2=16\)
\(\Leftrightarrow x+4=4\) hoặc \(x+4=-4\)
\(\Leftrightarrow x=-4\) ( thỏa mãn x\(\ne\)0) hoặc x=0 (ktm x\(\ne\)0)
vậy x=-4
Điều kiện \(x\ne0\)
\(\Leftrightarrow8.\dfrac{x^4+2x^2+1}{x^2}+4.\dfrac{x^8+2x^4+1}{x^4}-4.\dfrac{x^4+1}{x^2}.\dfrac{x^4+2x^2+1}{x^2}=\left(x^2+8x+16\right)\)
\(\Leftrightarrow x^2+8x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=-8\end{matrix}\right.\)
Hung nguyen,Ace Legona và những ai có thể giải bài này,help me!!
\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\) ⇔ \(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)\left(x^2+\dfrac{1}{x^2}-x^2-\dfrac{1}{x^2}-2\right)=\left(x+4\right)^2\) ⇔ \(8\left(x+\dfrac{1}{x}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)=\left(x+4\right)^2\) ( x # 0 )
⇔ \(8\left(x^2+\dfrac{1}{x^2}+2-x^2-\dfrac{1}{x^2}\right)=\left(x+4\right)^2\)
⇔ \(x^2+8x=0\)
⇔ \(x=0\left(KTM\right)orx=-8\left(TM\right)\)
KL...............
2.a)
\(2x\left(6x-1\right)>\left(3x-2\right)\left(4x+3\right)\)
\(\Leftrightarrow12x^2-2x>12x^2+9x-8x-6\)
\(\Leftrightarrow12x^2-2x-12x^2-9x+8x>6\)
\(\Leftrightarrow-3x>6\)
\(\Leftrightarrow3>\dfrac{6}{-3}\)
\(\Leftrightarrow x< -2\)
Vậy nghiệm của bpt \(S=\left\{-2\right\}\)
2.b)
\(\dfrac{2\left(x+1\right)}{3}-2\ge\dfrac{x-2}{2}\)
\(\Leftrightarrow4\left(x+1\right)-2.6\ge3x-6\)
\(\Leftrightarrow4x+4-12\ge3x-6\)
\(\Leftrightarrow4x-3x\ge-6-4+12\)
\(\Leftrightarrow x\ge2\)
vậy nghiệm của bpt x\(\ge\)2
Ta có: \(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)
đkxđ: x khác 0
\(\Leftrightarrow8.\left(x+\dfrac{1}{x}\right)\left(x+\dfrac{1}{x}\right)-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)+4\left(x^2+\dfrac{1}{x^2}\right)^2=x^2+8x+16\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)\left[\left(8.x+\dfrac{1}{x}\right)-4\left(x^2+\dfrac{1}{x^2}\right)\right]+4\left(x^4+2+\dfrac{1}{x^2}\right)-x^2-8x-16=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)\left[\left(\dfrac{8x^2+1}{x}-4x^2-\dfrac{4}{x^2}\right)\right]+4x^4+8+\dfrac{4}{x^2}-x^2-8x-16=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)\left(\dfrac{x\left(8x^2+1\right)}{x^2}-\dfrac{4x^2.x^2}{x^2}-\dfrac{4}{x^2}\right)+......=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)\left(\dfrac{8x^3+x-4x^4-4}{x^2}\right)+...=0\)
\(\Leftrightarrow\dfrac{x^2}{x}.-\dfrac{4x^4+8x^3+x-4}{x^2}+.....=0\)
\(\Leftrightarrow-\dfrac{4x^6+8x^5+x^3-4x^2}{x^3}+\dfrac{4x^4+8+4x^2}{1}-\dfrac{x^2-8x-16}{1}=0\)
\(\Leftrightarrow......+\dfrac{x^3.\left(4x^4+8+4x^2\right)}{x^3}-\dfrac{x^3\left(x^2-8x-16\right)}{x^3}=0\)
\(\Leftrightarrow-4x^6+8x^5+x^3-4x^2+4x^7+8x^3+4x^5-x^5+8x^4+16x^3=0\)
\(\Leftrightarrow4x^7-4x^6+12x^5+8x^4+25x^3-4x^2=0\)
=> x=0 ( loại , ko tm)
Vậy pt vô nghiệm
đkxđ với mọi x
đặt a=x2+x+1
\(\dfrac{a}{a+1}+\dfrac{a+1}{a+2}=\dfrac{7}{6}\)
<=> \(\dfrac{6a\left(a+2\right)}{6\left(a+1\right)\left(a+2\right)}+\dfrac{6\left(a+1\right)^2}{6\left(a+1\right)\left(a+2\right)}=\dfrac{7\left(a+1\right)\left(a+2\right)}{6\left(a+1\right)\left(a+2\right)}\)
=> 6a(a+2) +6(a+1)2 =7(a+1)(a+2)
<=> 6a2+12a +6a2 +12a+6 =a2 +21a+14
<=> 12a2 -a2+24a-21a+6-14=0
<=> 11a2+3a-8=0
<=> 11a2 +11a-8a-8=0
<=> (11a2 +11a)-(8a+8)=0
<=> 11a(a+1)-8(a+1)=0
<=> (a+1)(11a-8)=0
=> a=-1 và a=\(\dfrac{8}{11}\)
thay a=x2+x+1 ta đc
x2+x+1=-1
<=> x2+x+2 =0 (vô nghiệm)
và x2+x+\(\dfrac{3}{11}\) =0(vô nghiệm )
vậy pt trên vô nghiệm
c) \(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\left(2\right)\)ĐKXĐ : x # 0
( 2) <=> \(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)\left[\left(x^2+\dfrac{1}{x^2}\right)-\left(x+\dfrac{1}{x}\right)^2\right]=\left(x+4\right)^2\)
\(< =>8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right).\left(-2\right)=\left(x+4\right)^2\)
\(< =>8.\left[\left(x+\dfrac{1}{x}\right)^2-x^2-\dfrac{1}{x^2}\right]=\left(x+4\right)^2\)
\(< =>16=\left(x+4\right)^2\)
<=> x2 + 8x = 0
<=> x( x + 8) = 0
<=> x = 0 ( KTM ) hoặc x = - 8 ( TM )
Vậy,....
Phương pháp:
Đặt \(x+\dfrac{1}{x}=a\Rightarrow a^2=x^2+\dfrac{1}{x^2}+2\Leftrightarrow a^2-2=x^2+\dfrac{1}{x^2}\)
Thay vào pt
\(x\ne0:đặt:x+\dfrac{1}{x}=t\)
\(pt\Leftrightarrow2t^2+4\left(t^2-2\right)^2-4\left(t^2-2\right)t^2=\left(x+4\right)^2\)
\(\Leftrightarrow2t^2+4\left(t^4-4t^2+4\right)-4\left(t^4-2t^2\right)=\left(x+4\right)^2\)
\(\Leftrightarrow2t^2+4t^4-16t^2+16-4t^4+8t^2=\left(x+4\right)^2\)
\(\Leftrightarrow-6t^2+16=\left(x+4\right)^2\)
\(\Leftrightarrow-6\left(x^2+2+\dfrac{1}{x^2}\right)+16=x^2+8x+16\)
\(\Leftrightarrow-6x^2-\dfrac{6}{x^2}-x^2-8x-12=0\Leftrightarrow-6x^4-x^4-8x^3-12x^2-6=0\Leftrightarrow-7x^4-8x^3-12x^2-6=0\left(vô-nghiệm\right)\)
(bn xem lại đề)