Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2x-1)^2 -(2x+1)^2=4(x-3)
<=>(2x-1-2x-1)(2x-1+2x+1)=4(x-3)
<=> -2 . 4x = 4x -12
<=> -8x + (- 4x) = -12
<=> - 12x = -12
<=> x = 1
Vậy phuwowg trình có nghiệm là x=1
ý b)
2x -3 = 3(x -1) + x+2
<=> 2x - 3 =3x -3 +x +2
<=>2x -3x -x =3-3+2
<=> -2x = 2
<=> x = -1
Vậy ..........
Ở ý a bạn dùng hằng đẳng thức hiệu hai bình phương rồi tính toán như tìm x
Ở ý b thì lại đơn giản chỉ cần nhân ra rồi chuyển vế nhớ đổi dấu khi chuyển vế
CHÚC BẠN HỌC NGAY CANG GIỎI NHỚ CHO MK NHÉ
.
\(\frac{3x-3}{x^2-1}=\frac{x}{x-2}-1\)ĐKXĐ : \(x\ne\pm1;x\ne2\)
\(\Leftrightarrow\frac{3\left(x-1\right)\left(x-2\right)}{\left(x-1\right)\left(x+1\right)\left(x-2\right)}=\frac{x\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\frac{3\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{x\left(x+1\right)-\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}\)
\(\Rightarrow3x-6=x^2+x-x^2+x+2\)
\(\Leftrightarrow3x-6-2x-2=0\)
\(\Leftrightarrow x-8=0\)
\(\Leftrightarrow x=8\)( thỏa )
Vậy....
\(\frac{3x-3}{x^2-1}=\frac{x}{x-2}-\)\(1\)
\(\Leftrightarrow\) \(\frac{3.\left(x-1\right)}{\left(x-1\right).\left(x+1\right)}\)\(=\frac{x}{x-2}-1\)
\(\Leftrightarrow\)\(\frac{3}{x+1}=\frac{x}{x-2}-1\)
ĐKXĐ : \(x\ne-1,2\)
\(\Leftrightarrow\)\(\frac{3.\left(x-2\right)}{\left(x+1\right).\left(x-2\right)}\)\(=\frac{x.\left(x+1\right)}{\left(x+1\right).\left(x-2\right)}\)\(-\frac{\left(x+1\right).\left(x-2\right)}{\left(x+1\right).\left(x-2\right)}\)
\(\Leftrightarrow\)\(3x-6=x^2+x-\left(x^2-2x+x-2\right)\)
\(\Leftrightarrow\)\(3x-6=x^2+x-x^2+x+2\)
\(\Leftrightarrow\)\(3x-x-x=6+2\)
\(\Leftrightarrow\) \(x=8\)
Vậy phương trình có nghiệm là : \(x=8\)
Mình nghĩ tại vì :
\(\frac{1}{x}+\frac{1}{x+1}-\frac{1}{x+2}-\frac{1}{x+3}=\left(\frac{1}{x}+\frac{1}{x+1}\right)-\left(\frac{1}{x+2}+\frac{1}{x+3}\right)\)
Xét trường hợp \(x\)nguyên dương ta có :
\(\frac{1}{x}>\frac{1}{x+2}\)và \(\frac{1}{x+1}>\frac{1}{x+3}\)
\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{x+1}>\frac{1}{x+2}+\frac{1}{x+2}\)
\(\Rightarrow\)\(\left(\frac{1}{x}+\frac{1}{x+1}\right)-\left(\frac{1}{x+2}+\frac{1}{x+3}\right)>0\)
Xét trường hợp \(x\)nguyên âm ta có :
\(\frac{1}{x}< \frac{1}{x+2}\)và \(\frac{1}{x+1}< \frac{1}{x+3}\)
\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{x+1}< \frac{1}{x+2}+\frac{1}{x+3}\)
\(\Rightarrow\)\(\left(\frac{1}{x}+\frac{1}{x+1}\right)-\left(\frac{1}{x+2}+\frac{1}{x+3}\right)< 0\)
Loại trường hợp \(x=0\)vì mẫu phải khác \(0\)
Mình nghĩ vậy :))
Ta có :
\(\frac{5}{x}+\frac{4}{x+1}=\frac{3}{x+2}+\frac{2}{x+3}\)
\(\Leftrightarrow\)\(\left(\frac{5}{x}+1\right)+\left(\frac{4}{x+1}+1\right)=\left(\frac{3}{x+2}+1\right)+\left(\frac{2}{x+3}+1\right)\)
\(\Leftrightarrow\)\(\frac{x+5}{x}+\frac{x+5}{x+1}-\frac{x+5}{x+2}-\frac{x+5}{x+3}=0\)
\(\Leftrightarrow\)\(\left(x+5\right)\left(\frac{1}{x}+\frac{1}{x+1}+\frac{1}{x+2}+\frac{1}{x+3}\right)=0\)
Vì \(\left(\frac{1}{x}+\frac{1}{x+1}+\frac{1}{x+2}+\frac{1}{x+3}\right)\ne0\)
\(\Rightarrow\)\(x+5=0\)
\(\Rightarrow\)\(x=-5\)
Vậy \(x=-5\)
Giải phương trình:
a) (x+2)3 - (x-2)3 = 12x(x-1) - 8
<=> (x2 + 3.x2.2 + 3.x.22 + 23) - (x2 - 3.x2.2 + 3.x.22 - 23) - [12x(x-1) - 8] = 0
<=> (x3 + 6x2 + 12x + 8) - (x3 - 6x2 + 12x - 8) - (12x2 - 12x - 8) = 0
<=> x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x + 8 = 0
<=> 12x +32 = 0
<=> x = \(\frac{-32}{12}\) = \(-2\frac{2}{3}\)
Vậy phương trình có nghiệm duy nhất là \(-2\frac{2}{3}\)
b) (3x-1)2 - 5(2x+1)2 + (6x-3)(2x+1) = (x-1)2
<=> (9x2 - 6x + 1) - 5(4x2 + 4x + 1) + 3(2x - 1)(2x + 1) - (x2 - 2x +1) = 0
<=> 9x2 - 6x + 1 - 20x2 - 20x - 5 + 3(4x2 - 1) - x2 + 2x -1 = 0
<=> 9x2 - 6x + 1 - 20x2 - 20x - 5 + 12x2 - 3 - x2 + 2x -1 = 0
<=> -24x - 8 = 0
<=> x = \(\frac{-8}{24}\) = \(\frac{-1}{3}\)
Vậy phương trình có nghiệm duy nhất là \(\frac{-1}{3}\)
\(\left(x-3\right)\left(x-2\right)\left(x+1\right)\left(x+2\right)=84\)
\(\Leftrightarrow\left(x^2-x+2\right)\left(x^2-x-6\right)=84\)
Đặt:\(t=x^2-x-2\) ta có phương trình sau:
\(t^2=100\)
\(\Leftrightarrow\orbr{\begin{cases}t=10\\t=-10\end{cases}}\)
Vậy phương trình có \(n_oS=\left\{-3;4\right\}\)