K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

Đặt ẩn phụ

20 tháng 7 2019

\(a,\sqrt[3]{x+1}=x+1\)

\(\Leftrightarrow\left(x+1\right)=\left(x+1\right)^3\)

\(\Leftrightarrow\left(x+1\right)\left[\left(x+1\right)^2-1\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+1+1\right)\left(x+1-1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow x=0\left(h\right)x=-1\left(h\right)x=-2\)

18 tháng 8 2020

lên hỏi đáp 247 hỏi cho nhanh !

11 tháng 8 2018

bài 1:

a:\(\sqrt{\left(\sqrt{3}-2\right)^2}\)+\(\sqrt{\left(1+\sqrt{3}\right)^2}\)
=\(\sqrt{3}-2+1+\sqrt{3}\)
=\(2\sqrt{3}-1\)
b; dài quá mink lười làm thông cảm 
bài 2:
\(\sqrt{x^2-2x+1}=7\)
=>\(\sqrt{\left(x-1\right)^2}=7 \)
=>\(\orbr{\begin{cases}x-1=7\\x-1=-7\end{cases}}\)
=>\(\orbr{\begin{cases}x=8\\x=-6\end{cases}}\)
b: \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
=>\(\sqrt{4\left(x-5\right)}-9\sqrt{x-5}=\sqrt{1-x}\)
\(=2\sqrt{x-5}-9\sqrt{x-5}=\sqrt{1-x}\)
=>\(-7\sqrt{x-5}=\sqrt{1-x}\)
=\(-7.\left(x-5\right)=1-x\)
=>\(-7x+35=1-x\)
=>\(-7x+x=1-35\)
=>\(-6x=-34\)
=>\(x\approx5.667\)
mink sợ câu b bài 2 sai đó bạn

11 tháng 8 2018

1 a)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)

\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)

\(|2-\sqrt{3}|+|1+\sqrt{3}|\)

\(2-\sqrt{3}+1+\sqrt{3}\)

\(2+1\)\(3\)

b) \(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\right)\cdot\left(3\sqrt{\frac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)

\(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{6}{3^2}}-4\sqrt{\frac{6}{2^2}}\right)\cdot\left(3\sqrt{\frac{6}{3^2}}-\sqrt{6}\sqrt{2}-\sqrt{6}\right)\)

\(\left(\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-\frac{4}{2}\sqrt{6}\right)\cdot\left(\frac{3}{3}\sqrt{6}-\sqrt{6}\cdot\sqrt{2}-\sqrt{6}\right)\)

\(\left(\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-2\sqrt{6}\right)\cdot\left(\sqrt{6}-\sqrt{6}\cdot\sqrt{2}-\sqrt{6}\right)\)

\(\left(\sqrt{6}\left(\frac{3}{2}+\frac{2}{3}-2\right)\right)\cdot\left(\sqrt{6}\left(1-\sqrt{2}-1\right)\right)\)

\(\sqrt{6}\frac{1}{6}\cdot\sqrt{6}\left(-\sqrt{2}\right)\)

\(\sqrt{6}^2\left(\frac{-\sqrt{2}}{6}\right)\)

\(6\frac{-\sqrt{2}}{6}\)=\(-\sqrt{2}\)

2 a) \(\sqrt{x^2-2x+1}=7\)

<=> \(\sqrt{x^2-2x\cdot1+1^2}=7\)

<=> \(\sqrt{\left(x-1\right)^2}=7\)

<=> \(|x-1|=7\)

Nếu \(x-1>=0\)=>\(x>=1\)

=> \(|x-1|=x-1\)

\(x-1=7\)<=>\(x=8\)(thỏa)

Nếu \(x-1< 0\)=>\(x< 1\)

=> \(|x-1|=-\left(x-1\right)=1-x\)

\(1-x=7\)<=>\(-x=6\)<=> \(x=-6\)(thỏa)

Vậy x=8 hoặc x=-6

b) \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)

<=> \(\sqrt{4\left(x-5\right)}-3\frac{\sqrt{x-5}}{3}=\sqrt{1-x}\)

<=> \(2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\)

<=> \(\sqrt{x-5}=\sqrt{1-x}\)

ĐK \(x-5>=0\)<=> \(x=5\)

\(1-x\)<=> \(-x=-1\)<=> \(x=1\)

Ta có \(\sqrt{x-5}=\sqrt{1-x}\)

<=> \(\left(\sqrt{x-5}\right)^2=\left(\sqrt{1-x}\right)^2\)

<=> \(x-5=1-x\)

<=> \(x-x=1+5\)

<=> \(0x=6\)(vô nghiệm)

Vậy phương trình vô nghiệm

Kết bạn với mình nha :)

31 tháng 7 2017

a/ Sửa đề: \(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)

Đặt \(\hept{\begin{cases}\sqrt{4x+1}=a\ge0\\\sqrt{3x-2}=b\ge0\end{cases}}\)

\(\Rightarrow a^2-b^2=x+3\)

\(\Rightarrow a-b=\frac{a^2-b^2}{5}\)

\(\Leftrightarrow\left(a-b\right)\left(\frac{a+b}{5}-1\right)\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\a=5-b\end{cases}}\)

Với \(a=b\)

\(\Rightarrow\sqrt{4x+1}=\sqrt{3x-2}\)

\(\Leftrightarrow x=-3\)

Với \(a=5-b\)

\(\Rightarrow\sqrt{4x+1}=5-\sqrt{3x-2}\)

31 tháng 7 2017

Trường hợp thứ 2 chưa kịp tính cái lỡ tay bấm rồi. Mà thôi cũng đơn giản nên tự làm trường hợp đó nha.

22 tháng 11 2016

d/ \(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{\left(x-1\right)^2}+\sqrt[3]{x^2-1}=1\)

Đặt \(\hept{\begin{cases}\sqrt[3]{x+1}=a\\\sqrt[3]{x-1}=b\end{cases}\Rightarrow a^3-b^3=2}\)

\(\Rightarrow\hept{\begin{cases}a^3-b^3=2\\a^2+b^2+ab=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)\left(a^2+b^2+ab\right)=2\\a^2+b^2+ab=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a-b=2\\a^2+b^2+ab=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a-b=2\\b^2+2b+1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=-1\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt[3]{x+1}=1\\\sqrt[3]{x-1}=-1\end{cases}\Leftrightarrow}x=0}\)

22 tháng 11 2016

bài b , lập phương lên 

bài c , đặt cái căn đưa về hệ 

mới nhìn dc làm dc liền thế thui

20 tháng 7 2019

\(a)\sqrt[3]{x+1}-1=x\\ \Leftrightarrow\sqrt[3]{x+1}=x+1\\ \Leftrightarrow x+1=\left(x+1\right)^3\\ \Leftrightarrow x+1-\left(x+1\right)^3=0\\ \Leftrightarrow\left(x+1\right)\left(1-\left(x+1\right)^2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\1-\left(x+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\\left(x+1\right)^2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-2\end{matrix}\right.\)

Vậy...

20 tháng 7 2019

b) Phương trình tương đương:

\(1+6\sqrt[3]{1-x^2}+1=8\\ \Leftrightarrow6\sqrt[3]{1-x^2}=6\\ \Leftrightarrow\sqrt[3]{1-x^2}=1\\ \Leftrightarrow1-x^2=1\\ \Leftrightarrow-x^2=0\\ \Leftrightarrow x=0\)

Vậy \(x=0\)