K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020
https://i.imgur.com/s9QrL5D.jpg
13 tháng 2 2020
https://i.imgur.com/7p0hoi8.jpg
7 tháng 3 2020

Gợi ý :

Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)

Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)

Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)

7 tháng 3 2020

bài 3

\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)

=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)

=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)

=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)

=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)

=> x=100

24 tháng 2 2020

d, \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)

\(\Leftrightarrow\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)

\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)

\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)

\(\Leftrightarrow x+10=0\) (Vì \(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\) ≠ 0)

\(\Leftrightarrow x=-10\)

Vậy x = -10 là nghiệm của phương trình.

24 tháng 2 2020

Hỏi đáp ToánHỏi đáp Toán

9 tháng 2 2017

ĐKXĐ: x\(x\ne\)1,-1

a) pt <=> \(\left(\frac{x}{x-1}+\frac{x}{x+1}\right)^2-\frac{2x^2}{x^2-1}=\frac{10}{9}\)

<=> \(\frac{4x^4}{\left(x^2-1\right)^2}-\frac{2x^2}{x^2-1}=\frac{10}{9}\)

Đặt: t=\(\frac{2x^2}{x^2-1}\)

Pt trở thành: \(t^2-t-\frac{10}{9}=0\)\(\Leftrightarrow9t^2-9t-10=0\)<=> \(\orbr{\begin{cases}t=-\frac{1}{3}\\t=\frac{5}{6}\end{cases}}\)

Nếu: \(\frac{2x^2}{x^2-1}=-\frac{1}{3}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{1}{7}}\\x=-\sqrt{\frac{1}{7}}\end{cases}\left(tm\right)}\)

Nếu: \(\frac{2x^2}{x^2-1}=\frac{5}{6}\)(vô nghiệm)

Vậy nghiệm là ...

http://vchat.vn/pictures/service/2017/02/iit1486637364.PNG

27 tháng 2 2020

Hỏi đáp ToánHỏi đáp Toán

27 tháng 2 2020

cảm ơn nha

11 tháng 2 2019

ĐKXĐ: \(x\ne\left\{-1;-\frac{1}{2}\right\}\)

\(\Leftrightarrow\left(\frac{x^2-4x+1}{x+1}+1\right)+\left(\frac{x^2-5x+1}{2x+1}+1\right)=0\)

\(\Leftrightarrow\frac{x^2-3x+2}{x+1}+\frac{x^2-3x+2}{2x+1}=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(\frac{1}{x+1}+\frac{1}{2x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right).\frac{3x+2}{\left(x+1\right)\left(2x+1\right)}=0\)

Tập nghiệm: \(S=\left\{1;2;-\frac{2}{3}\right\}\)

Ta có:\(\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)

\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)

\(\Rightarrow\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)

Mà \(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}>0\)

\(\Rightarrow x+2015=0\Rightarrow x=-2015\)

\(S=\left\{-2015\right\}\)

16 tháng 4 2020

gợi ý 

2017-x-2=2018-3-x=2019-4-x=2020-5-x

13 tháng 2 2019

d) x+1/2019 + x+3/2017 = x+5/2015 + x+7/2013

<=> x+1/2019 + x+3/2017 - x+5/2015 - x+7/2013 =0

<=> ( x+1/2019 + 1) + ( x+3/2017 + 1) - ( x+5/2015 + 1) - ( x+7/2013 +1) = 0

<=> ( x+1+2019/2019) +(x+3+2017/2017) - ( x+5+2015/2015) -   ( x+7+2013/2013) =0

<=> x+2020/2019 + x+2020/2017 - x+2020/2015 - x+2020/2013 =0

<=> (x+2020)× ( 1/2019 + 1/2017 - 1/2015 - 1/2013) =0

Mà 1/2019 + 1/2017 - 1/2015 - 1/2013  khác 0

=> x+2020 =0

=> x = -2020

13 tháng 2 2019

\(\left(x-1\right)=\left(x-1\right)\left(x-2\right)\)

\(\Leftrightarrow\left(x-1\right)-\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

HOẶC\(x-1=0\Leftrightarrow x=1\)(NHẬN)

HOẶC\(x-3=0\Leftrightarrow x=3\)(NHẬN)

VẬY: tập ngiệm của pt là S={1;3}