K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018
x \(\frac{5}{2}\) 4 
2x-5-0+|+
x-4-|-0+

+) Nếu  \(x\le\frac{5}{2}\Leftrightarrow\left|2x-5\right|=5-2x\)

                                  \(\left|x-4\right|=4-x\)

\(pt\Leftrightarrow5-2x-4+x=4x\)

\(\Leftrightarrow-5x=-1\)

\(\Leftrightarrow x=\frac{1}{5}\left(tm\right)\)

+) Nếu  \(\frac{5}{2}< x\le4\Leftrightarrow\left|2x-5\right|=2x-5\)

                                           \(\left|x-4\right|=4-x\)

\(pt\Leftrightarrow2x-5-4+x=4x\)

\(\Leftrightarrow-x=9\)

\(\Leftrightarrow x=-9\) (loại)

+) Nếu  \(x>4\Leftrightarrow\left|2x-5\right|=2x-5\)

                                \(\left|x-4\right|=x-4\)

\(pt\Leftrightarrow2x-5-x+4=4x\)

\(\Leftrightarrow-3x=1\)

\(\Leftrightarrow x=-\frac{1}{3}\)( loại )

Vậy ...

( p/s : câu b tương tự )

9 tháng 5 2021

a,\(2x+5=2-x\)

\(< =>2x+x+5-2=0\)

\(< =>3x+3=0\)

\(< =>x=-1\)

b, \(/x-7/=2x+3\)

Với \(x\ge7\)thì \(PT< =>x-7=2x+3\)

\(< =>2x-x+3+7=0\)

\(< =>x+10=0< =>x=-10\)( lọai )

Với \(x< 7\)thì \(PT< =>7-x=2x+3\)

\(< =>2x+x+3-7=0\)

\(< =>3x-4=0< =>x=\frac{4}{3}\) ( loại )

9 tháng 5 2021

c,\(\frac{4}{x+2}-\frac{4x-6}{4x-x^3}=\frac{x-3}{x\left(x-2\right)}\left(đk:x\ne-2;0;2\right)\)

\(< =>\frac{4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{4x-6}{x\left(x-2\right)\left(2+x\right)}=\frac{\left(x-3\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)

\(< =>4x^2-8x+4x-6=x^2-x-6\)

\(< =>4x^2-x^2-4x+x-6+6=0\)

\(< =>3x^2-3x=0< =>3x\left(x-1\right)=0< =>\orbr{\begin{cases}x=0\left(loai\right)\\x=1\left(tm\right)\end{cases}}\)

9 tháng 5 2020

a,<=> 3x+1/4-2x-3/5=1

<=> x-7/20=1

<=> x= 27/20

a, \(\left(3x+\frac{1}{4}\right)-\frac{1}{3}\left(6x+\frac{9}{5}\right)=1\)

\(3x+\frac{1}{4}-\frac{6}{3}x-\frac{3}{5}=1\)

\(x-\frac{7}{20}=1\Leftrightarrow x=\frac{27}{20}\)

b,ĐKXĐ : x \(\ne\)-1/2 ; 1/2 

 \(\left(\frac{5}{2x+1}\right)-\left(\frac{2x}{1-2x}\right)=1-\left(\frac{6-4x}{4x^2-1}\right)\)

\(\frac{5}{2x+1}-\frac{2x}{1-2x}=1-\frac{6-4x}{4x^2-1}\)

\(\frac{5}{2x+1}-\frac{2x}{1-2x}=1-\frac{2\left(3-2x\right)}{\left(2x+1\right)\left(2x-1\right)}\)

\(\frac{5\left(1-2x\right)\left(2x-1\right)\left(2x+1\right)}{\left(2x+1\right)^2\left(1-2x\right)\left(2x-1\right)}-\frac{2x\left(2x+1\right)^2\left(2x-1\right)}{\left(1-2x\right)\left(2x+1\right)^2\left(2x-1\right)}=\frac{\left(2x+1\right)^2\left(1-2x\right)\left(2x-1\right)}{\left(2x+1\right)^2\left(1-2x\right)\left(2x-1\right)}-\frac{2\left(3-2x\right)\left(2x+1\right)\left(1-2x\right)}{\left(2x+1\right)\left(2x-1\right)^2\left(2x-1\right)\left(1-2x\right)}\)

\(22x-5-20x^2-8x^3=18x-7-8x^3-4x^2\)

lm nốt nha,bị troll rồi ko vt đc nữa.

31 tháng 3 2020

a 5y+12=8y+27 

5y-8y=27-12

-3y=15

y=-5

31 tháng 3 2020

b 3(x-11)

3x-33

25 tháng 4 2020

Bài 1:

a) (5x-4)(4x+6)=0

\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)

b) (x-5)(3-2x)(3x+4)=0

<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0

<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)

c) (2x+1)(x2+2)=0

=> 2x+1=0 (vì x2+2>0)

=> x=\(\frac{-1}{2}\)

30 tháng 4 2020

bài 1: 

a) (5x - 4)(4x + 6) = 0

<=> 5x - 4 = 0 hoặc 4x + 6 = 0

<=> 5x = 0 + 4 hoặc 4x = 0 - 6

<=> 5x = 4 hoặc 4x = -6

<=> x = 4/5 hoặc x = -6/4 = -3/2

b) (x - 5)(3 - 2x)(3x + 4) = 0

<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0

<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4

<=> x = 5 hoặc -2x = -3 hoặc 3x = -4

<=> x = 5 hoặc x = 3/2 hoặc x = 4/3

c) (2x + 1)(x^2 + 2) = 0

vì x^2 + 2 > 0 nên:

<=> 2x + 1 = 0

<=> 2x = 0 - 1

<=> 2x = -1

<=> x = -1/2

bài 2: 

a) (2x + 7)^2 = 9(x + 2)^2

<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36

<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0

<=> -5x^2 - 8x + 13 = 0

<=> (-5x - 13)(x - 1) = 0

<=> 5x + 13 = 0 hoặc x - 1 = 0

<=> 5x = 0 - 13 hoặc x = 0 + 1

<=> 5x = -13 hoặc x = 1

<=> x = -13/5 hoặc x = 1

b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)

<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20

<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0

<=> -5x^3 - 2x^2 + 17x - 14 = 0

<=> (-x + 1)(x + 2)(5x - 7) = 0

<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0

<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7

<=> x = 1 hoặc x = -2 hoặc 5x = 7

<=> x = 1 hoặc x = -2 hoặc x = 7/5

6 tháng 2 2021

\(4x^2-4x-5\left|2x-1\right|-5=0\)

\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)

\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)

\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)

TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)

\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)

\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)

TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)

\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)

\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh 

Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }

a: \(\Leftrightarrow x\left(2x+10\right)-x\left(x-2\right)=0\)

=>x(2x+10-x+2)=0

=>x(x+12)=0

=>x=0 hoặc x=-12

b: \(\Leftrightarrow\left(2x-5\right)\left(x+11\right)+\left(2x-5\right)\left(2x+1\right)=0\)

=>(2x-5)(3x+12)=0

=>x=5/2 hoặc x=-4

c: \(\Leftrightarrow\left(2x\right)^2-\left(x+3\right)^2=0\)

=>(x-3)(3x+3)=0

=>x=3 hoặc x=-1

d: \(\Leftrightarrow\left(x+2\right)\left(5-4x\right)-\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(x+2\right)\left(5-4x-x-2\right)=0\)

=>(x+2)(-5x+3)=0

=>x=-2 hoặc x=3/5

6 tháng 2 2022

\(a,\left(x-2\right)x=2x\left(x+5\right)\)

\(\Leftrightarrow\left(x-2\right)x-2x\left(x+5\right)=0\)

\(\Leftrightarrow x.\left(x-2-2x-10\right)=0\)

\(\Leftrightarrow x\left(-x-12\right)=0\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+12=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-12\end{matrix}\right.\)

5 tháng 11 2017

giúp mình bài ni với :3x^2(x+1)-5x(x+1)^2+4(x+1)