Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(5\left(m+3x\right)\left(x+1\right)-4\left(1+2x\right)=80\)
Phương trình nhận \(x=2\)làm nghiệm nên :
\(5\left(m+3.2\right)\left(2+1\right)-4\left(1+2.2\right)=80\)
\(\Leftrightarrow15m+90-20=80\)
\(\Leftrightarrow15m=80+20-90\)
\(\Leftrightarrow15m=10\Leftrightarrow m=1,5\)
....
b, \(3\left(2x+m\right)\left(3x+2\right)-2\left(3x+1\right)^2=43\)
Phương trình nhận \(x=1\)làm nghiệm nên :
\(3\left(2.1+m\right)\left(3.1+2\right)-2\left(3.1+1\right)^2=43\)
\(\Leftrightarrow30+15m-32=43\)
\(\Leftrightarrow15m=43+32-30\)
\(\Leftrightarrow15m=45\Leftrightarrow m=3\)
....
\(\frac{315-x}{101}+\frac{313-x}{103}+\frac{311-x}{105}+\frac{309-x}{107}+4=0\)
\(\Leftrightarrow\frac{315-x}{101}+1+\frac{313-x}{103}+1+\frac{311-x}{105}+1+\frac{309-x}{107}+1=0\)
\(\Leftrightarrow\frac{416-x}{101}+\frac{416-x}{103}+\frac{416-x}{105}+\frac{416-x}{107}=0\)
\(\Leftrightarrow\left(416-x\right)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)
\(\Leftrightarrow416-x=0\)
\(\Leftrightarrow x=416\)
a) 5(m + 3x)(x + 1) - 4(1 + 2x) = 80
Phương trình có nghiệm x = 2:
5(m + 3.2)(2 + 1) - 4(1 + 2.2) = 80
<=> 5(m + 6).3 - 4.5 = 80
<=> 15(m + 6) - 4.5 = 80
<=> 15(m + 6) - 20 = 80
<=> 15(m + 6) = 80 + 20
<=> 15(m + 6) = 100
<=> m + 6 = 100 : 15
<=> m + 6 = 20/3
<=> m = 20/3 - 6
<=> m = 2/3
b) 3(2x + m)(3x + 2) - 2(3x + 1)2 = 43
Phương trình có nghiệm x = 1:
3(2.1 + m)(3.1 + 2) - 2(3.1 + 1)2 = 43
<=> 3(2 + m).5 - 2.16 = 43
<=> 15(2 + m) - 32 = 43
<=> 15(2 + m) = 43 + 32
<=> 15(2 + m) = 75
<=> 2 + m = 75 : 15
<=> 2 + m = 5
<=> m = 5 - 2
<=> m = 3
Câu 6 :
a, Ta có : \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\)
=> \(\frac{15x}{15}+\frac{5\left(2x+\frac{x-1}{5}\right)}{15}=\frac{15}{15}-\frac{3\left(3x-\frac{1-2x}{3}\right)}{15}\)
=> \(15x+5\left(2x+\frac{x-1}{5}\right)=15-3\left(3x-\frac{1-2x}{3}\right)\)
=> \(15x+10x+\frac{5\left(x-1\right)}{5}=15-9x+\frac{3\left(1-2x\right)}{3}\)
=> \(15x+10x+x-1=15-9x+1-2x\)
=> \(15x+10x+x-1-15+9x-1+2x=0\)
=> \(37x-17=0\)
=> \(x=\frac{17}{37}\)
Vậy phương trình trên có nghiệm là \(S=\left\{\frac{17}{37}\right\}\)
Bài 7 :
a, Ta có : \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)
=> \(\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}-\frac{x-23}{27}=0\)
=> \(\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)
=> \(x-23=0\)
=> \(x=23\)
Vậy phương trình trên có nghiệm là \(S=\left\{23\right\}\)
c, Ta có : \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)
=> \(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)
=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)
=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}-\frac{x+2005}{2002}-\frac{x+2005}{2001}=0\)
=> \(\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
=> \(x+2005=0\)
=> \(x=-2005\)
Vậy phương trình trên có nghiệm là \(S=\left\{-2005\right\}\)
e, Ta có : \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
=> \(\frac{x-45}{55}-1+\frac{x-47}{53}-1=\frac{x-55}{45}-1+\frac{x-53}{47}-1\)
=> \(\frac{x-100}{55}+\frac{x-100}{53}=\frac{x-100}{45}+\frac{x-100}{47}\)
=> \(\frac{x-100}{55}+\frac{x-100}{53}-\frac{x-100}{45}-\frac{x-100}{47}=0\)
=> \(\left(x-100\right)\left(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\right)=0\)
=> \(x-100=0\)
Vậy phương trình trên có nghiệm là \(S=\left\{100\right\}\)
a) \(2\left(3x-1\right)-\left(5+3x\right)=3\left(2x-1\right)\)
\(\Leftrightarrow6x-2-5-3x=6x-3\)
\(\Leftrightarrow6x-3x-6x=-3+2+5\)
\(\Leftrightarrow-3x=4\)
\(\Leftrightarrow x=-\frac{4}{3}\)
b) \(3\left(x-\frac{1}{2}\right)+4\left(\frac{x}{3}-\frac{1}{3}\right)=\frac{x}{4}\)
\(\Leftrightarrow3x-\frac{3}{2}+\frac{4}{3}x-\frac{4}{3}=\frac{x}{4}\)
\(\Leftrightarrow3x+\frac{4}{3}x-\frac{x}{4}=\frac{3}{2}+\frac{4}{3}\)
\(\Leftrightarrow\frac{49}{12}x=\frac{17}{6}\)
\(\Leftrightarrow x=\frac{34}{49}\)
c) \(\frac{1}{5}\left(x-\frac{1}{3}\right)-4\left(\frac{x}{5}-\frac{1}{2}\right)=x\)
\(\Leftrightarrow\frac{1}{5}x-\frac{1}{15}-\frac{4}{5}x+2=x\)
\(\Leftrightarrow\frac{1}{5}x-\frac{4}{5}x-x=\frac{1}{15}-2\)
\(\Leftrightarrow-\frac{8}{5}x=-\frac{29}{15}\)
\(\Leftrightarrow x=\frac{29}{24}\)
a, Ta có : \(\frac{x+1}{2}+\frac{x-2}{4}=1-\frac{2\left(x-1\right)}{3}\)
=> \(\frac{6\left(x+1\right)}{12}+\frac{3\left(x-2\right)}{12}=\frac{12}{12}-\frac{8\left(x-1\right)}{12}\)
=> \(6\left(x+1\right)+3\left(x-2\right)=12-8\left(x-1\right)\)
=> \(6x+6+3x-6=12-8x+8\)
=> \(17x=20\)
=> \(x=\frac{20}{17}\)
b, Ta có : \(\frac{5x-1}{6}+x=\frac{6-x}{4}\)
=> \(\frac{5x-1+6x}{6}=\frac{6-x}{4}\)
=> \(4\left(11x-1\right)=6\left(6-x\right)\)
=> \(44x-4-36+6x=0\)
=> \(\)\(50x=40\)
=> \(x=\frac{4}{5}\)
c, Ta có : \(\frac{5\left(1-2x\right)}{3}+\frac{x}{2}=\frac{3\left(x-5\right)}{4}-2\)
=> \(\frac{20\left(1-2x\right)}{12}+\frac{6x}{12}=\frac{9\left(x-5\right)}{12}-\frac{24}{12}\)
=> \(20\left(1-2x\right)+6x=9\left(x-5\right)-24\)
=> \(20-40x+6x-9x+45+24=0\)
=> \(43x=89\)
=> \(x=\frac{89}{43}\)
Do \(x^2\ge0\Rightarrow x^2+1\ge1\Rightarrow\frac{1}{x^2+1}>0.\)
Tương tự \(\frac{1}{x^2+2};\frac{1}{x^2+3};\frac{1}{x^2}+4>0\)
=> Phương trình vô nghiệm
ĐKXĐ: ...
\(\Leftrightarrow\frac{9\left(2x+5\right)^2}{4\left(x+4\right)^2}+\left(2x+5\right)^2=8\)
\(\Leftrightarrow\frac{9\left(2x+5\right)^2}{4\left(x+4\right)^2}-2.\frac{3\left(2x+5\right)}{2\left(x+4\right)}.\left(2x+5\right)+\left(2x+5\right)^2+\frac{3\left(2x+5\right)^2}{x+4}=8\)
\(\Leftrightarrow\left(\left(2x+5\right)-\frac{3\left(2x+5\right)}{2\left(x+4\right)}\right)^2+\frac{3\left(2x+5\right)^2}{x+4}=8\)
\(\Leftrightarrow\left(\frac{\left(2x+5\right)^2}{2\left(x+4\right)}\right)^2+\frac{3\left(2x+5\right)^2}{x+4}-8=0\)
Đặt \(\frac{\left(2x+5\right)^2}{x+4}=a\)
\(\Leftrightarrow\frac{a^2}{4}+3a-8=0\)
Nghiệm xấu, bạn tự giải nốt
\(\frac{x+1}{x-2}=\frac{1}{x^2-4}\left(x\ne\pm2\right)\)
\(\Leftrightarrow\frac{x+1}{x-2}-\frac{1}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{x^2+3x+3}{\left(x-2\right)\left(x+1\right)}-\frac{1}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Rightarrow x^2+3x+3-1=0\)
\(\Leftrightarrow x^2+3x+2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)
<=> x+1=0 hoặc x+2=0
<=> x=-1 hoặc x=-2
\(b,\frac{3}{x+1}=\frac{5}{2x+2}\)
\(\frac{3}{x+1}=\frac{5}{2\left(x+1\right)}\)
\(3=\frac{5}{2}\left(vl\right)\)vô nghiệm