Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x=-45^0+k90^0,k\in\mathbb{Z}\)
b) \(x=-\dfrac{\pi}{6}+k\pi,k\in\mathbb{Z}\)
c) \(x=\dfrac{3\pi}{4}+k2\pi,k\in\mathbb{Z}\)
d) \(x=300^0+k540^0,k\in\mathbb{Z}\)
a) Ta có:
sin(x+1)=23⇔[x+1=arcsin23+k2πx+1=π−arcsin23+k2π⇔[x=−1+arcsin23+k2πx=−1+π−arcsin23+k2π;k∈Zsin(x+1)=23⇔[x+1=arcsin23+k2πx+1=π−arcsin23+k2π⇔[x=−1+arcsin23+k2πx=−1+π−arcsin23+k2π;k∈Z
b) Ta có:
sin22x=12⇔1−cos4x2=12⇔cos4x=0⇔4x=π2+kπ⇔x=π8+kπ4,k∈Zsin22x=12⇔1−cos4x2=12⇔cos4x=0⇔4x=π2+kπ⇔x=π8+kπ4,k∈Z
c) Ta có:
cot2x2=13⇔⎡⎢⎣cotx2=√33(1)cotx2=−√33(2)(1)⇔cotx2=cotπ3⇔x2=π3+kπ⇔x=2π3+k2π,k∈z(2)⇔cotx2=cot(−π3)⇔x2=−π3+kπ⇔x=−2π3+k2π;k∈Zcot2x2=13⇔[cotx2=33(1)cotx2=−33(2)(1)⇔cotx2=cotπ3⇔x2=π3+kπ⇔x=2π3+k2π,k∈z(2)⇔cotx2=cot(−π3)⇔x2=−π3+kπ⇔x=−2π3+k2π;k∈Z
d) Ta có:
tan(π12+12x)=−√3⇔tan(π12+12π)=tan(−π3)⇔π12+12=−π3+kπ⇔x=−5π144+kπ12,k∈Z
Vậy nghiệm của phương trình đã cho là: x=−5π144+kπ12,k∈Z
a)
\(sin\left(x+1\right)=\dfrac{2}{3}\Leftrightarrow\left[{}\begin{matrix}x+1=arcsin\dfrac{2}{3}+k2\pi\\x+1=\pi-arcsin\dfrac{2}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\dfrac{2}{3}-1+k2\pi\\x=\pi-arcsin\dfrac{2}{3}-1+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\).
Bài 5. a) Vì = tan 300 nên
tan (x - 150) = ⇔ tan (x - 150) = tan 300
⇔ x - 150 = 300 + k1800 ⇔ x = 450 + k1800 , (k ∈ Z).
b) Vì -√3 = cot() nên
cot (3x - 1) = -√3 ⇔ cot (3x - 1) = cot()
⇔ 3x - 1 = + kπ ⇔ x =
c) Đặt t = tan x thì cos2x = , phương trình đã cho trở thành
. t = 0 ⇔ t ∈ {0 ; 1 ; -1} .
Vì vậy phương trình đã cho tương đương với
d) sin 3x . cot x = 0 ⇔ .
Với điều kiện sinx # 0, phương trình tương đương với
sin 3x . cot x = 0 ⇔
Với cos x = 0 ⇔ x = + kπ, k ∈ Z thì sin2x = 1 – cos2x = 1 – 0 = 1 => sinx # 0, điều kiện được thỏa mãn.
Với sin 3x = 0 ⇔ 3x = kπ ⇔ x = , (k ∈ Z). Ta còn phải tìm các k nguyên để x = vi phạm điều kiện (để loại bỏ), tức là phải tìm k nguyên sao cho sin = 0, giải phương trình này (với ẩn k nguyên), ta có
sin = 0 ⇔ = lπ, (l ∈ Z) ⇔ k = 3l ⇔ k : 3.
Do đó phương trình đã cho có nghiệm là x = + kπ, (k ∈ Z) và x = (với k nguyên không chia hết cho 3).
a1.
$\cot (2x+\frac{\pi}{3})=-\sqrt{3}=\cot \frac{-\pi}{6}$
$\Rightarrow 2x+\frac{\pi}{3}=\frac{-\pi}{6}+k\pi$ với $k$ nguyên
$\Leftrightarrow x=\frac{-\pi}{4}+\frac{k}{2}\pi$ với $k$ nguyên
a2. ĐKXĐ:...............
$\cot (3x-10^0)=\frac{1}{\cot 2x}=\tan 2x$
$\Leftrightarrow \cot (3x-\frac{\pi}{18})=\cot (\frac{\pi}{2}-2x)$
$\Rightarrow 3x-\frac{\pi}{18}=\frac{\pi}{2}-2x+k\pi$ với $k$ nguyên
$\Leftrightarrow x=\frac{\pi}{9}+\frac{k}{5}\pi$ với $k$ nguyên.
a3. ĐKXĐ:........
$\cot (\frac{\pi}{4}-2x)-\tan x=0$
$\Leftrightarrow \cot (\frac{\pi}{4}-2x)=\tan x=\cot (\frac{\pi}{2}-x)$
$\Rightarrow \frac{\pi}{4}-2x=\frac{\pi}{2}-x+k\pi$ với $k$ nguyên
$\Leftrightarrow x=-\frac{\pi}{4}+k\pi$ với $k$ nguyên.
a4. ĐKXĐ:.....
$\cot (\frac{\pi}{6}+3x)+\tan (x-\frac{\pi}{18})=0$
$\Leftrightarrow \cot (\frac{\pi}{6}+3x)=-\tan (x-\frac{\pi}{18})=\tan (\frac{\pi}{18}-x)$
$=\cot (x+\frac{4\pi}{9})$
$\Rightarrow \frac{\pi}{6}+3x=x+\frac{4\pi}{9}+k\pi$ với $k$ nguyên
$\Rightarrow x=\frac{5}{36}\pi + \frac{k}{2}\pi$ với $k$ nguyên.
a) Để giải phương trình cot(12x + π/4) = -1, ta áp dụng tính chất của hàm cơ-tang:
cot(12x + π/4) = -1 => 12x + π/4 = π + nπ (với n là số nguyên) => 12x = 3π/4 + nπ - π/4 => 12x = 2π/4 + nπ => 12x = π/2 + nπ => x = (π/2 + nπ)/12 (với n là số nguyên)
b) Để giải phương trình cot(4x) = 1/√3, ta áp dụng tính chất của hàm cơ-tang:
cot(4x) = 1/√3 => 4x = π/6 + nπ (với n là số nguyên) => x = (π/6 + nπ)/4 (với n là số nguyên)
c) Để giải phương trình cot(x + 15 độ) = cot(60 độ), ta áp dụng tính chất của hàm cơ-tang:
cot(x + 15 độ) = cot(60 độ) => x + 15 độ = 60 độ + n180 độ (với n là số nguyên) => x = 45 độ + n180 độ (với n là số nguyên)
d) Để giải phương trình cot(30 độ - 2x) = cot(10 độ), ta áp dụng tính chất của hàm cơ-tang:
cot(30 độ - 2x) = cot(10 độ) => 30 độ - 2x = 10 độ + n180 độ (với n là số nguyên) => -2x = -20 độ + n180 độ => x = 10 độ - n90 độ (với n là số nguyên)
a: cot(1/2x+pi/4)=-1
=>cot(1/2x+pi/4)=cot(-pi/4)
=>1/2x+pi/4=-pi/4+kpi
=>1/2x=-pi/2+kpi
=>x=-pi+k2pi
b: cot 4x=1/căn 3
=>4x=pi/3+kpi
=>x=pi/12+kpi/4
c: cot(x+15 độ)=cot 60 độ
=>x+15 độ=60 độ+k*180 độ
=>x=45 độ+k*180 độ
d: cot(30 độ-2x)=cot 10 độ
=>30 độ-2x=10 độ+k*180 độ
=>2x=20 độ-k*180 độ
=>x=10 độ-k*90 độ