Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ:...
\(\Leftrightarrow4x^2-4x\sqrt{2x-1}-3x^2+6x-3=0\)
\(\Leftrightarrow4x\left(x-\sqrt{2x-1}\right)-3\left(x-1\right)^2=0\)
\(\Leftrightarrow\frac{4x\left(x-1\right)^2}{x+\sqrt{2x-1}}-3\left(x-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\frac{4x}{x+\sqrt{2x-1}}=3\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow4x=3x+3\sqrt{2x-1}\)
\(\Leftrightarrow x=3\sqrt{2x-1}\)
\(\Leftrightarrow x^2-18x+9=0\) \(\Rightarrow9\pm6\sqrt{2}\)
Vậy pt có 3 nghiệm....
b/ ĐKXĐ:...
\(\Leftrightarrow4x^2-4x\sqrt{4x-3}-x^2+4x-3=0\)
\(\Leftrightarrow4x\left(x-\sqrt{4x-3}\right)-\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow\frac{4x\left(x^2-4x+3\right)}{x+\sqrt{4x-3}}-\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+3=0\Rightarrow x=...\\\frac{4x}{x+\sqrt{4x-3}}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow4x=x+\sqrt{4x-3}\)
\(\Leftrightarrow3x=\sqrt{4x-3}\)
\(\Leftrightarrow9x^2-4x+3=0\) (vô nghiệm)
Vậy...
b)\(x^4+4x^3+6x^2+4x+\sqrt{x^2+2x+17}=3\)
Tự giải điều kiện nhé
\(pt\Leftrightarrow x^4+4x^3+6x^2+4x+1+\sqrt{x^2+2x+17}-4=0\)
\(\Leftrightarrow\left(x+1\right)^4+\frac{x^2+2x+17-16}{\sqrt{x^2+2x+17}+4}=0\)
\(\Leftrightarrow\left(x+1\right)^4+\frac{x^2+2x+1}{\sqrt{x^2+2x+17}+4}=0\)
\(\Leftrightarrow\left(x+1\right)^4+\frac{\left(x+1\right)^2}{\sqrt{x^2+2x+17}+4}=0\)
\(\Leftrightarrow\left(x+1\right)^2\left[\left(x+1\right)^2+\frac{1}{\sqrt{x^2+2x+17}+4}\right]=0\)
Dễ thấy: \(\left(x+1\right)^2+\frac{1}{\sqrt{x^2+2x+17}+4}>0\) (vô nghiệm)
\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x+1=0\Rightarrow x=-1\) (thỏa)
Vậy x=-1 là nghiệm của pt
a)Đk:\(x\ge-1\)
\(pt\Leftrightarrow5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left(x^2+2\right)\)
Đặt \(\hept{\begin{cases}\sqrt{x+1}=a>0\\\sqrt{x^2-x+1}=b>0\end{cases}}\) thì ta có:
\(a^2+b^2=\left(x^2-x+1\right)+\left(x+1\right)=x^2+2\)
Ta được pt tương đương \(5ab=2\left(a^2+b^2\right)\)
\(\Leftrightarrow2a^2+2b^2-5ab=0\)
\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)
*)Xét \(2a=b\Rightarrow2\sqrt{x+1}=\sqrt{x^2-x+1}\)
\(\Leftrightarrow4\left(x+1\right)=x^2-x+1\)
\(\Leftrightarrow-x^2+5x+3=0\Leftrightarrow x_{1,2}=-\frac{-5\pm\sqrt{37}}{2}\) (thỏa)
*)Xét \(b=2a\)\(\Rightarrow\sqrt{x+1}=2\sqrt{x^2-x+1}\)
\(\Rightarrow x+1=4\left(x^2-x+1\right)\)
\(\Rightarrow-4x^2+5x-3=0\Rightarrow-\frac{1}{16}\left(8x-5\right)^2-\frac{23}{16}< 0\) (loại)