Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 – 4u + 24 + 6u = u + 27 + 3u
⇔ -4u + 6u – u – 3u = 27 – 3 – 24
⇔ -2u = 0
⇔ u = 0.
Vậy phương trình có nghiệm u = 0.
a) 3x - 2 = 2x - 3
⇔ 3x - 2x = -3 + 2
⇔ x = -1
Vậy phương trình có nghiệm duy nhất x = -1.
b) 3 - 4u + 24 + 6u = u + 27 + 3u
⇔ 2u + 27 = 4u + 27
⇔ 2u - 4u = 27 - 27
⇔ -2u = 0
⇔ u = 0
Vậy phương trình có nghiệm duy nhất u = 0.
a, 3x -2 = 2x - 3
=> 3x - 2x = 2 - 3
=> x= - 1
b, là tương tự câu a
các câu sau bạn nhân phá ra mà giải nhé
a, 3x - 2 = 2x - 3
3x - 2x = -3 + 2
x = -1
b, 3 - 4u + 24 + 6u = u + 27 + 3u
-4u + 6u - u - 3u = 27 - 3 - 24
-2u = 0
u = 0 : (-2)
u = 0
c, 5 - (x - 6) = 4(3 - 2x)
5 - x + 6 = 12 - 8x
-x + 8x = 12 - 5 - 6
7x = 1
x = 1/7
d, -6(1,5 - 2x) = 3(-15 + 2x)
-9 + 12x = -45 + 6x
12x - 6x = -45 + 9
6x = -36
x = (-36) : 6
x = -6
e, 0,1 - 2(0,5 - 0,1) = 2(t - 2,5) - 0,7
0,1 - 1 + 0,2 = 2t - 5 - 0,7
-2t = -5 - 0,7 - 0,1 + 1 - 0,2
-2t = -5
t = -5/-2
t = 5/2
a) 3x - 2 = 2x - 3
⇔ 3x - 2x = -3 + 2
⇔ x = -1
Vậy phương trình có nghiệm duy nhất x = -1.
b) 3 - 4u + 24 + 6u = u + 27 + 3u
⇔ 2u + 27 = 4u + 27
⇔ 2u - 4u = 27 - 27
⇔ -2u = 0
⇔ u = 0
Vậy phương trình có nghiệm duy nhất u = 0.
c) 5 - (x - 6) = 4(3 - 2x)
⇔ 5 - x + 6 = 12 - 8x
⇔ -x + 11 = 12 - 8x
⇔ -x + 8x = 12 - 11
⇔ 7x = 1
⇔ x = 17
Vậy phương trình có nghiệm duy nhất x = 17.
d) -6(1,5 - 2x) = 3(-15 + 2x)
⇔ -9 + 12x = -45 + 6x
⇔ 12x - 6x = -45 + 9
⇔ 6x = -36
⇔ x = -6
Vậy phương trình có nghiệm duy nhất x = -6
giải các phương trình :
a)
\(3x-2=2x-3\)
\(\Leftrightarrow3x-2x=2-3\)
\(\Leftrightarrow x=-1\)
b)
\(3-4u+24+6u=u+27+3u\)
\(\Leftrightarrow-4u+6u-u-3u=-3-24+27\)
\(\Leftrightarrow6u=0\)
\(\Leftrightarrow u=0\)
c)
\(5-\left(x-6\right)=4\left(3-2x\right)\)
\(\Leftrightarrow5-x+6=12-8x\)
\(\Leftrightarrow-x+8x=-5-6+12\)
\(\Leftrightarrow7x=1\)
\(\Leftrightarrow x=\frac{1}{7}\)
d)
\(-6.\left(1.5-2x\right)=3.\left(-15+2x\right)\)
\(\Leftrightarrow-9+12x=-45+6x\)
\(\Leftrightarrow12x-6x=9-45\)
\(\Leftrightarrow6x=-36\)
\(\Leftrightarrow x=-6\)
a,\(3x-2=2x-3\)
\(\Leftrightarrow\)\(3x-2-2x+3=0\)
\(\Leftrightarrow\)\(x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy tập nhgiệm của pt là S= {-1}
b,\(3-4u+24+6u=u+27+3u\)
\(\Leftrightarrow3-4u+24+6u-u-27-3u=0\)
\(\Leftrightarrow-2u=0\)
\(\Leftrightarrow u=0\)
Vậy tập nghiệm của pt là S={0}
c,\(5-\left(x-6\right)=4\left(3-2x\right)\)
\(\Leftrightarrow5-x+6-12+8x=0\)
\(\Leftrightarrow7x-1=0\)
\(\Leftrightarrow x=\frac{1}{7}\)
Vậy tập nghiệm của pt là S={\(\frac{1}{7}\)}
d,\(-6\left(1,5-2x\right)=3\left(-15+2x\right)\)
\(\Leftrightarrow-9+12x+45-6x=0\)
\(\Leftrightarrow6x+36=0\)
\(\Leftrightarrow6\left(x+6\right)=0\)
\(\Leftrightarrow x+6=0\)
\(\Leftrightarrow x=-6\)
Vậu tập nghiệm của pt là S={-6}
e,\(0,1-2\left(0,5t-0,1\right)=2\left(t-2,5\right)-0,7\)
\(\Leftrightarrow0,1-t+0,2-2t+5+0,7=0\)
\(\Leftrightarrow6-3t=0\)
\(\Leftrightarrow3\left(2-t\right)=0\)
\(\Leftrightarrow2-t=0\)
\(\Leftrightarrow t=2\)
Vậy tập nghiệm của pt là S={2}
\(\)
a) 3x – 2 = 2x – 3
<=> 3x – 2x = -3 + 2
<=> x = -1
Vậy phương trình có nghiệm duy nhất là x = -1
b) 3 – 4u + 24 + 6u = u + 27 + 3u
<=> 2u + 27 = 4u + 27
<=> 2u – 4u = 27 – 27
<=> -2u = 0
<=> u = 0
Vậy phương trình có nghiệm duy nhất u = 0
5 – (x – 6) = 4(3 – 2x)
<=> 5 – x + 6 = 12 – 8x
<=> -x + 11 = 12 – 8x
<=> -x + 8x = 12 – 11
<=> 7x = 1
<=> x = 1/7
Vậy phương trình có nghiệm duy nhất x = 1/7
d) -6(1,5 – 2x) = 3(-15 + 2x)
<=> -9 + 12x = -45 + 6x
<=> 12x – 6x = -45 + 9
<=> 6x = -36
<=> x = -6
Vậy phương trình có nghiệm duy nhất x = -6
( Làm vậy đúng chưa mn )
a) 3x - 2 = 2x - 3
⇔ 3x - 2x = - 3 + 2
⇔ x = - 1
Vậy phương trình có nghiệm duy nhất x = - 1.
b) 3 - 4u + 24 + 6u = u + 27 + 3u
⇔ 2u + 27 = 4u + 27
⇔ 2u - 4u = 27 - 27
⇔ - 2u = 0
⇔ u = 0
Vậy phương trình có nghiệm duy nhất u = 0.
c) 5 - (x - 6) = 4(3 - 2x)
⇔ 5 - x + 6 = 12 - 8x
⇔ - x + 11 = 12 - 8x
⇔ - x + 8x = 12 - 11
⇔ 7x = 1
⇔ x = \(\dfrac{1}{7}\)
Vậy phương trình có nghiệm duy nhất x = \(\dfrac{1}{7}\).
d) -6(1,5 - 2x) = 3(-15 + 2x)
⇔ -9 + 12x = - 45 + 6x
⇔ 12x - 6x = - 45 + 9
⇔ 6x = -36
⇔ x = - 6
Vậy phương trình có nghiệm duy nhất x = - 6.
e) 0,1 - 2(0,5t - 0,1) = 2(t - 2,5) - 0,7
⇔ 0,1 - t + 0,2 = 2t - 5 - 0,7
⇔ -t + 0,3 = 2t - 5,7
⇔ - t - 2t = -5,7 - 0,3
⇔ - 3t = - 6
⇔ t = 2
Vậy phương trình có nghiệm duy nhất t = 2.
f) \(\dfrac{3}{2}\left(x-\dfrac{5}{4}-\dfrac{5}{8}\right)=x\)
\(\Leftrightarrow\dfrac{3}{2}x-\dfrac{15}{8}-\dfrac{5}{8}=x\\ \Leftrightarrow\dfrac{3}{2}x-x=\dfrac{15}{8}+\dfrac{5}{8}\\ \Leftrightarrow\dfrac{1}{2}x=\dfrac{20}{8}\\ \Leftrightarrow x=\dfrac{20}{8}:\dfrac{1}{2}\\ \Leftrightarrow x=5\)
Vậy phương trình có nghiệm duy nhất x = 5.
a)3x-2=2x-3
⇔3x-2x=-3+2
⇔x=-1
b)3-4u+24+6u=u+27+3u
⇔-4u+6u-u-3u=27-3-24
⇔-2u=0
⇔u=0
c)5-(x-6)=4(3-2x)
⇔5-x+6=12-8x
⇔-x+8x=12-5-6
⇔7x=1
⇔x=1/7
d)-6(1,5-2x)=3(-15+2x)
⇔-9+12x=-45+6x
⇔12x-6x=-45+9
⇔6x=-36
⇔x=-6
a) \(3x-2=2x-3\)
\(\Leftrightarrow3x-2x=-3+2\)
\(\Leftrightarrow x=-1\)
a) 3x - 2 = 2x - 3
⇔ 3x - 2x = -3 + 2
⇔ x = -1
Vậy phương trình có nghiệm duy nhất x = -1.
b) 3 - 4u + 24 + 6u = u + 27 + 3u
⇔ 2u + 27 = 4u + 27
⇔ 2u - 4u = 27 - 27
⇔ -2u = 0
⇔ u = 0
Vậy phương trình có nghiệm duy nhất u = 0.
c) 5 - (x - 6) = 4(3 - 2x)
⇔ 5 - x + 6 = 12 - 8x
⇔ -x + 11 = 12 - 8x
⇔ -x + 8x = 12 - 11
⇔ 7x = 1
⇔ x = 17
Vậy phương trình có nghiệm duy nhất x = 17.
d) -6(1,5 - 2x) = 3(-15 + 2x)
⇔ -9 + 12x = -45 + 6x
⇔ 12x - 6x = -45 + 9
⇔ 6x = -36
⇔ x = -6
Vậy phương trình có nghiệm duy nhất x = -6
ĐKXĐ: \(\left\{{}\begin{matrix}u\ne\frac{1}{3}\\u\ne-\frac{11}{3}\end{matrix}\right.\)
\(\frac{1}{\left(3u-1\right)^2}-\frac{3}{\left(3u+11\right)^2}+\frac{2}{\left(3u-1\right)\left(3u+11\right)}=0\)
\(\Leftrightarrow\left(3u+11\right)^2-3\left(3u-1\right)^2+2\left(3u-1\right)\left(3u+11\right)=0\)
\(\Leftrightarrow\left(3u+11\right)^2-\left(3u-1\right)\left(3u+11\right)+3\left[\left(3u-1\right)\left(3u+11\right)-\left(3u-1\right)^2\right]=0\)
\(\Leftrightarrow12\left(3u+11\right)-36\left(3u-1\right)=0\)
\(\Leftrightarrow3u=7\Rightarrow u=\frac{7}{3}\)
ĐKXĐ: \(\left\{{}\begin{matrix}1-3u\ne0\\3u+11\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3u\ne1\\3u\ne-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u\ne\frac{1}{3}\\u\ne-\frac{11}{3}\end{matrix}\right.\)
Ta có: \(\frac{2}{\left(1-3u\right)\left(3u+11\right)}=\frac{1}{9u^2-6u+1}-\frac{3}{\left(3u+11\right)^2}\)
\(\Leftrightarrow\frac{2}{\left(1-3u\right)\left(3u+11\right)}-\frac{1}{\left(3u-1\right)^2}+\frac{3}{\left(3u+11\right)^2}=0\)
\(\Leftrightarrow\frac{2\cdot\left(1-3u\right)\cdot\left(3u+11\right)}{\left(1-3u\right)^2\left(3u+11\right)^2}-\frac{\left(3u+11\right)^2}{\left(1-3u\right)^2\left(3u+11\right)^2}+\frac{\left(1-3u\right)^2\cdot3}{\left(3u+11\right)^2\left(1-3u\right)^2}=0\)
\(\Leftrightarrow\left(2-6u\right)\left(3u+11\right)-\left(9u^2+66u+121\right)+\left(1-6u+9u^2\right)\cdot3=0\)
\(\Leftrightarrow6u+22-18u^2-66u-9u^2-66u-121+3-18u+27u^2=0\)
\(\Leftrightarrow-144u-96=0\)
\(\Leftrightarrow-144u=96\)
\(\Leftrightarrow u=-\frac{96}{144}=-\frac{2}{3}\)(thỏa mãn)
Vậy: \(u=-\frac{2}{3}\)
\(3-4u+24+6u=u+27+3u\)
\(2u-21=4u+27\)
\(2u-4u=27+21\)
\(-2u=48\)
\(u=48:\left(-2\right)\)
\(u=-24\)