Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải phương trình sau:
a, (3x+1/4)-1/3*(6x+9/5)=1
b, (5/2x+1)-(2x/1-2x)=1-(6-4x/4x^2-1)
giải hộ mk vs ạ
a, \(\left(3x+\frac{1}{4}\right)-\frac{1}{3}\left(6x+\frac{9}{5}\right)=1\)
\(3x+\frac{1}{4}-\frac{6}{3}x-\frac{3}{5}=1\)
\(x-\frac{7}{20}=1\Leftrightarrow x=\frac{27}{20}\)
b,ĐKXĐ : x \(\ne\)-1/2 ; 1/2
\(\left(\frac{5}{2x+1}\right)-\left(\frac{2x}{1-2x}\right)=1-\left(\frac{6-4x}{4x^2-1}\right)\)
\(\frac{5}{2x+1}-\frac{2x}{1-2x}=1-\frac{6-4x}{4x^2-1}\)
\(\frac{5}{2x+1}-\frac{2x}{1-2x}=1-\frac{2\left(3-2x\right)}{\left(2x+1\right)\left(2x-1\right)}\)
\(\frac{5\left(1-2x\right)\left(2x-1\right)\left(2x+1\right)}{\left(2x+1\right)^2\left(1-2x\right)\left(2x-1\right)}-\frac{2x\left(2x+1\right)^2\left(2x-1\right)}{\left(1-2x\right)\left(2x+1\right)^2\left(2x-1\right)}=\frac{\left(2x+1\right)^2\left(1-2x\right)\left(2x-1\right)}{\left(2x+1\right)^2\left(1-2x\right)\left(2x-1\right)}-\frac{2\left(3-2x\right)\left(2x+1\right)\left(1-2x\right)}{\left(2x+1\right)\left(2x-1\right)^2\left(2x-1\right)\left(1-2x\right)}\)
\(22x-5-20x^2-8x^3=18x-7-8x^3-4x^2\)
lm nốt nha,bị troll rồi ko vt đc nữa.
ĐKXĐ : \(\hept{\begin{cases}x^2+x-6\ne0\\x^2+4x+3\ne0\\2x-1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(x-2\right)\ne0\\\left(x+1\right)\left(x+3\right)\ne0\\x\ne\frac{1}{2}\end{cases}\Rightarrow\hept{\begin{cases}x\ne2;-3\\x\ne-1;-3\\x\ne\frac{1}{2}\end{cases}}}}\)
TXĐ : \(x\ne\left\{-3;-1;\frac{1}{2};2\right\}\)
\(pt\Leftrightarrow\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}=\frac{-3}{2x-1}\)
\(\Leftrightarrow\frac{5\left(x+1\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+1\right)\left(x+3\right)}=\frac{-3}{2x-1}\)
\(\Leftrightarrow\frac{3x+9}{\left(x-2\right)\left(x+1\right)\left(x+3\right)}=\frac{-3}{2x-1}\)
\(\Leftrightarrow\frac{3}{\left(x-2\right)\left(x+1\right)}=\frac{-3}{2x-1}\)
\(\Leftrightarrow\frac{1}{x^2-x-2}=\frac{1}{1-2x}\)
\(\Leftrightarrow x^2-x-2-1+2x=0\)
\(\Leftrightarrow x^2+x-3=0\)
\(\Leftrightarrow\left(x^2+2.\frac{1}{2}.x+\frac{1}{4}\right)-\frac{13}{4}=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2-\left(\frac{\sqrt{13}}{2}\right)^2=0\)
\(\Leftrightarrow\left(x+\frac{1-\sqrt{13}}{2}\right)\left(x+\frac{1+\sqrt{13}}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{13}-1}{2}\\x=\frac{-\sqrt{13}-1}{2}\end{cases}}\)
\(\frac{5}{x^2+x-6}-\frac{2}{x^2+4+3}=-\frac{3}{2x-1}\)
<=> \(\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}=-\frac{3}{2x-1}\)
<=> \(\frac{5\left(x+1\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}=-\frac{3}{2x-1}\)
<=> \(\frac{5x+5-2x+4}{\left(x-2\right)\left(x+3\right)}=-\frac{3}{2x-1}\)
<=> \(\frac{3x+9}{\left(x-2\right)\left(x+3\right)}=-\frac{3}{2x-1}\)
<=> \(\frac{3\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=-\frac{3}{2x-1}\)
<=> \(\frac{1}{x-2}=-\frac{1}{2x-1}\)
<=> x-2=1-2x <=> 3x=3
=> x=1
Đáp số: x=1
a, (3x+1)(7x+3)=(5x-7)(3x+1)
<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0
<=> (3x+1)(7x+3-5x+7)=0
<=> (3x+1)(2x+10)=0
<=> 2(3x+1)(x+5)=0
=> 3x+1=0 hoặc x+5=0
=> x= -1/3 hoặc x=-5
Vậy...
a) (3x - 2)(4x + 5) = 0
⇔ 3x - 2 = 0 hoặc 4x + 5 = 0
1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3
2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4
Vậy phương trình có tập nghiệm S = {2/3;−5/4}
b) (2,3x - 6,9)(0,1x + 2) = 0
⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3
2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.
Vậy phương trình có tập hợp nghiệm S = {3;-20}
c) (4x + 2)(x2 + 1) = 0 ⇔ 4x + 2 = 0 hoặc x2 + 1 = 0
1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2
2) x2 + 1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)
Vậy phương trình có tập hợp nghiệm S = {−1/2}
d) (2x + 7)(x - 5)(5x + 1) = 0
⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2
2) x - 5 = 0 ⇔ x = 5
3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5
Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}
a/ 4x + 20 = 0
⇔4x = -20
⇔x = -5
Vậy phương trình có tập nghiệm S = {-5}
b/ 2x – 3 = 3(x – 1) + x + 2
⇔ 2x-3 = 3x -3+x+2
⇔2x – 3x = -3+2+3
⇔-2x = 2
⇔x = -1
Vậy phương trình có tập nghiệm S = {-1}
câu tiếp theo
a/ (3x – 2)(4x + 5) = 0
3x – 2 = 0 hoặc 4x + 5 = 0
- 3x – 2 = 0 => x = 3/2
- 4x + 5 = 0 => x = – 5/4
Vậy phương trình có tập nghiệm S= {-5/4,3/2}
b/ 2x(x – 3) – 5(x – 3) = 0
=> (x – 3)(2x -5) = 0
=> x – 3 = 0 hoặc 2x – 5 = 0
* x – 3 = 0 => x = 3
* 2x – 5 = 0 => x = 5/2
Vậy phương trình có tập nghiệm S = {0, 5/2}
\(\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}\)
Đặt a = x2 - 2x + 3. Khi đó phương trình trở thành:
\(\frac{1}{a+1}+\frac{2}{a}=\frac{6}{a-1}\) \(ĐK:\)\(\hept{\begin{cases}a\ne0\\a\ne1\\a\ne-1\end{cases}}\)
\(\Leftrightarrow\)\(\frac{a\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}+\frac{2\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}=\frac{6a\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}\)
\(\Rightarrow\)\(a^2-a+2a^2-2-6a^2-6a=0\)
\(\Leftrightarrow\)\(-3a^2-7a-2=0\)
\(\Leftrightarrow\)\(\left(a-6\right)\left(a-1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}a-6=0\\a-1=0\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x^2-2x-3=0\\x^2-2x+2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-3\\x=1\end{cases}\left(x^2-2x+2\ne0\right)}\)
Vậy \(S=\left\{-3;1\right\}\)
x(4x - 1)2(2x - 1)= 3/2
<=>(16x2 - 8x + 1)( 2x2 - x)= 3/2
<=>(16x2 - 8x + 1)( 16x2 - 8x)= 12
Đặt 16x2 - 8x= y, ta có phương trình:
(y + 1) . y= 12
<=>y2 + y - 12=0
<=>y2 + 4x - 3x - 12=0
<=>y(y + 4) - 3(x + 4)=0
<=>(y + 4)(y - 3)=0
Đến đây tự làm tiếp nha.
x(4x-1)^2(2x+1)=3/2
<=>8x(4x-1)^2(2x-1)=8.3/2
<=>(16x^2-8x+1)(16x^2-8x)=12 (1)
đặt 16x^2-8x=y ta có
(y+1)y=12
<=>y^2+y-12=0
<=>y^2-3y+4y-12=0
<=>y(y-3)+4(y-3)=0
<=>(y-3)(y+4)=0
thay y=x^2+8x rồi giải phương trình
#Lười gõ phần sau
x(4x - 1)2(2x - 1)= 3/2
<=>(2x2 - x)(16x2 - 8x +1)= 3/2
<=>(16x2 - 8x)(16x2 - 8x + 1)= 12
Đặt 16x2 - 8x= y, ta được
y(y+ 1)=12
<=> y2 + y - 12=0
<=> y2 - 3y + 4y - 12=0
<=> y(y - 3) + 4(y - 3)=0
<=>(y - 3)(y + 4)=0
Đến đây tự làm nha
Nếu chơi lmht thì kb vs mk
Nhầm đề, ghi lại: Giải phương trình ( 8x - 4x^2 - 1)( x^2 + 2x+ 1) = 4( x^2 +x +1)
\(\left(2x+1\right)^2-\left(4x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow4x^2+4x+1-4x^2+7x+2=0\)
\(\Leftrightarrow11x+3=0\)
\(\Leftrightarrow x=-\frac{3}{11}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{3}{11}\right\}\)