Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CHÚ Ý: ĐÂY KHÔNG PHẢI TOÁN 9 EM NHÉ!
pt <=> \(1-2sin^2x-sinx=0\Leftrightarrow\orbr{\begin{cases}sin=-1\\sin=\frac{1}{2}\end{cases}}\)
tới đây là pt dạng cơ bản chỉ áp dụng công thức em tự giải nốt
ĐKXĐ: \(cosx\ne\frac{1}{2}\Rightarrow x\ne\pm\frac{\pi}{3}+k2\pi\)
\(cos2x+\sqrt{3}\left(1+sinx\right)=\frac{2cosx-1+4sinx.cosx-2sinx}{2cosx-1}\)
\(\Leftrightarrow cos2x+\sqrt{3}\left(1+sinx\right)=\frac{2cosx-1+2sinx\left(2cosx-1\right)}{2cosx-1}\)
\(\Leftrightarrow cos2x+\sqrt{3}+\sqrt{3}sinx=2sinx+1\)
\(\Leftrightarrow1-2sin^2x+\sqrt{3}\left(1+sinx\right)=2sinx+1\)
\(\Leftrightarrow2sin^2x+2sinx-\sqrt{3}\left(1+sinx\right)=0\)
\(\Leftrightarrow\left(2sinx-\sqrt{3}\right)\left(1+sinx\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\frac{\sqrt{3}}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{3}+k2\pi\left(ktm\right)\\x=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
a)\(\left(\sin x+\cos x\right)^2=\sin^2x+\cos^2x+2\sin x\cdot\cos x\)
\(=1+2\cdot\frac{1}{2}=1+1=2\)
\(\Rightarrow\sin x+\cos x=\sqrt{2}\)
b)\(\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x\cdot\cos^2x\)
\(=1^2-2\cdot\frac{1}{2}^2=1-\frac{1}{2}=\frac{1}{2}\)
c)\(\left|\sin x-\cos x\right|^2=\left(\sin x-\cos x\right)^2=\sin^2x+\cos^2x-2\sin x\cdot\cos x=1-2\cdot\frac{1}{2}=1-1=0\)
\(\left|\sin x+\cos x\right|=0\)
1: \(=\dfrac{cotx+1+tanx+1}{\left(tanx+1\right)\left(cotx+1\right)}\)
\(=\dfrac{\dfrac{1}{cotx}+cotx+2}{2+tanx+cotx}\)
\(=1\)
2: \(VT=\dfrac{cos^2x+cosxsinx+sin^2x-sinx\cdot cosx}{sin^2x-cos^2x}\)
\(=\dfrac{1}{sin^2x-cos^2x}\)
\(VP=\dfrac{1+cot^2x}{1-cot^2x}=\left(1+\dfrac{cos^2x}{sin^2x}\right):\left(1-\dfrac{cos^2x}{sin^2x}\right)\)
\(=\dfrac{1}{sin^2x}:\dfrac{sin^2x-cos^2x}{sin^2x}=\dfrac{1}{sin^2x-cos^2x}\)
=>VT=VP
a) \(\frac{1}{cos^2x}=1+tan^2x=1+\frac{9}{16}=\frac{25}{16}\)
\(\Leftrightarrow cos^2x=\frac{16}{25}\Leftrightarrow\orbr{\begin{cases}cosx=\frac{4}{5}\\cosx=\frac{-4}{5}\end{cases}}\)
- \(cosx=\frac{4}{5}\):
\(sinx=cosxtanx=\frac{4}{5}.\frac{3}{4}=\frac{3}{5}\)
\(cotx=\frac{1}{tanx}=\frac{1}{\frac{3}{4}}=\frac{4}{3}\).
- \(cosx=\frac{-4}{5}\):
\(sinx=cosxtanx=\frac{-4}{5}.\frac{3}{4}=\frac{-3}{5}\)
\(cotx=\frac{1}{tanx}=\frac{1}{\frac{3}{4}}=\frac{4}{3}\).
b) \(sin^2x+cos^2x=1\Leftrightarrow cos^2x=1-sin^2x=1-\frac{49}{625}=\frac{576}{625}\)
\(\Leftrightarrow\orbr{\begin{cases}cosx=\frac{24}{25}\\cosx=-\frac{24}{25}\end{cases}}\)
- \(cosx=\frac{24}{25}\):
\(tanx=\frac{sinx}{cosx}=\frac{\frac{7}{25}}{\frac{24}{25}}=\frac{7}{24}\)
\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{\frac{7}{24}}=\frac{24}{7}\)
- \(cosx=\frac{-24}{25}\):
\(tanx=\frac{sinx}{cosx}=\frac{\frac{7}{25}}{\frac{-24}{25}}=-\frac{7}{24}\)
\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{-\frac{7}{24}}=\frac{-24}{7}\)
Học cái viết đề đi b. Đọc không có ra
đề nè
\(\left(1+cosx\right)\cdot\left(1+4^{cosx}\right)=3\cdot4^{cosx}\)