Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(2017-x=a;2019-x=b;2x-4036=c\)
\(\Rightarrow a+b+c=0\)
Do \(a+b+c=0\Rightarrow a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\)
Có : \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab.\left(-c\right)+c^3=3abc\)
Do \(\left(2017-x\right)^3+\left(2019-x\right)^3+\left(2x-4036\right)^3=0\)
\(\Rightarrow3\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2017-x=0\\2019-x=0\\2x-4036=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2019\\x=2018\end{matrix}\right.\)
Vậy ...
nhận thấy (2017 - x) + (2019 -x) + (2x-4036) = 0
gọi 2017 - x = a ; 2019-x = b và 2x-4036 = c
có a+b+c=0 (=) a+b=-c (=) a3+b3+3ab.(a+b) = -c3 (=) a3+b3+c3 = 3abc (vì a+b=-c)
hay (2017 - x)3 + (2019 -x)3 + (2x-4036)3 = 3.(2017 - x).(2019 -x).(2x-4036) (1)
mà theo đề bài (2017 - x)3 + (2019 -x)3 + (2x-4036)3 =0 (2)
từ (1) và (2) =) 3.(2017 - x).(2019 -x).(2x-4036) =0
=) 2017 - x=0 hoặc 2019 -x=0 hoặc 2x-4036=0
(=) x=2017 hoặc x=2019 hoặc x=2018
vậy....
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
a) \(\orbr{\begin{cases}x-5=0\\x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=0\end{cases}}\)
b) \(\Leftrightarrow x^2-2x+1=0\)
<=> (x - 1)2 = 0
<=> x -1 = 0
<=> x = 1
a) \(x^3+3x^3+4x+4\)=0
=>\(x^3\)(x+1) + 4 ( x+1) = 0
=>(x+1)(\(^{x^3}\)+4) = 0
=>\(\hept{\begin{cases}x+1=0\\x^3+4=0\end{cases}}\)
=> \(\hept{\begin{cases}x=-1\\x^3=-4\end{cases}}\)
Tham khảo lời giải tải đây nha : http://123link.vip/TJMUnni
\(\left(2017-x\right)^3+\left(2019-x\right)^3+\left(2x-4036\right)^3=0\)
\(\Leftrightarrow\left(2017-x\right)^3+\left(2019-x\right)^3+\left(2x-4036\right)^3=0^3\)
\(\Rightarrow\hept{\begin{cases}2017-x=0\\2019-x=0\\2x-4036=0\end{cases}\Rightarrow\hept{\begin{cases}x=2017\\x=2019\\x=2018\end{cases}}}\)
Vì x có 3 giá trị nên phương trình vô nghiệm