K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

Câu 3b

Phương trình chứa ẩn ở mẫu

17 tháng 3 2019

Bài 2:

Đặt \(2017-x=a;2019-x=b;2x-4036=c\)

\(\Rightarrow a+b+c=0\)

Do \(a+b+c=0\Rightarrow a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\)

Có : \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab.\left(-c\right)+c^3=3abc\)

Do \(\left(2017-x\right)^3+\left(2019-x\right)^3+\left(2x-4036\right)^3=0\)

\(\Rightarrow3\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2017-x=0\\2019-x=0\\2x-4036=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2019\\x=2018\end{matrix}\right.\)

3:

a: =>x=0 hoặc x+5=0

=>x=0 hoặc x=-5

b: =>x^2=4

=>x=2 hoặc x=-2

c: =>(x-5)(2x+1+x+6)=0

=>(x-5)(3x+7)=0

=>x=5 hoặc x=-7/3

12 tháng 5 2023

1.

a. 2x - 6 > 0 

\(\Leftrightarrow\)  2x  > 6

\(\Leftrightarrow\)    x  > 3

S = \(\left\{x\uparrow x>3\right\}\) 

b. -3x + 9 > 0

\(\Leftrightarrow\)  - 3x   > - 9 

\(\Leftrightarrow\)      x < 3

S = \(\left\{x\uparrow x< 3\right\}\) 

c. 3(x - 1) + 5 > (x - 1) + 3

\(\Leftrightarrow\) 3x - 3 + 5 > x - 1 + 3

\(\Leftrightarrow\) 3x - 3 + 5 - x + 1 - 3 > 0

\(\Leftrightarrow\) 2x > 0 

\(\Leftrightarrow\)   x > 0

S = \(\left\{x\uparrow x>0\right\}\) 

d. \(\dfrac{x}{3}-\dfrac{1}{2}>\dfrac{x}{6}\) 

\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{3}{6}>\dfrac{x}{6}\)

\(\Leftrightarrow2x-3>x\)

\(\Leftrightarrow2x-3-x>0\)

\(\Leftrightarrow x-3>0\)

\(\Leftrightarrow x>3\)

\(S=\left\{x\uparrow x>3\right\}\)

2.

a. 

Ta có: a > b

3a > 3b (nhân cả 2 vế cho 3)

3a + 7 > 3b + 7 (cộng cả 2 vế cho 7)

b. Ta có: a > b

a > b (nhân cả 2 vế cho 1)

a + 3 > b + 3 (cộng cả 2 vế cho 3) (1)

Ta có; 3 > 1

b + 3 > b + 1 (nhân cả 2 vế cho 1b) (2)

Từ (1) và (2) \(\Rightarrow\) a + 3 > b + 1 

c.

5a - 1 + 1 > 5b - 1 + 1 (cộng cả 2 vế cho 1)

5a . \(\dfrac{1}{5}\) > 5b . \(\dfrac{1}{5}\) (nhân cả 2 vế cho \(\dfrac{1}{5}\) )

a > b

3.

a. 2x(x + 5) = 0

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\) 

\(S=\left\{0,-5\right\}\)

b. x2 - 4 = 0 

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

\(S=\left\{0,4\right\}\)

d. (x - 5)(2x + 1) + (x - 5)(x + 6) = 0

\(\Leftrightarrow\left(x-5\right)\left(2x+1+x+6\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(3x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-7}{3}\end{matrix}\right.\)

\(S=\left\{5,\dfrac{-7}{3}\right\}\)

 

13 tháng 6 2017

Đặt \(2x^2+x=t\)

Ta có: \(\left(2x^2+x\right)^2-4\left(2x^2+x\right)+3=0\)

\(\Rightarrow t^2-4t+3=0\)

\(\Leftrightarrow t=\dfrac{-\left(-4\right)\pm\sqrt{\left(-4\right)^2-4\cdot1\cdot3}}{2\cdot1}\)

\(\Leftrightarrow t=\dfrac{4\pm\sqrt{16-12}}{2}\)

\(\Leftrightarrow t=\dfrac{4\pm\sqrt{4}}{2}\)

\(\Leftrightarrow t=\dfrac{4\pm2}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{4-2}{2}\\t=\dfrac{4+2}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2+x=3\\2x^2+x=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\\x=-1\end{matrix}\right.\)

Vậy \(x_1=-\dfrac{3}{2};x_2=-1;x_3=\dfrac{1}{2};x_4=1\)

13 tháng 6 2017

bài 2:

Đặt \(t=2x^2+x\) thì ta có:

\(t^2-4t+3=0\)\(\Rightarrow\left(t-3\right)\left(t-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}t-1=0\\t-3=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}t=1\\t=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x^2+x=1\\2x^2+x=3\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}2x^2+x-1=0\\2x^2+x-3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)\left(2x-1\right)=0\\\left(x-1\right)\left(2x+3\right)=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=\dfrac{1}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

3 tháng 1 2017

bài 1

ab+bc+ca=0

=>ab+bc=-ca

ta có (a+b)(b+c)(c+a)/abc

=> (ab+ac+bc+b2)(c+a)/abc

=> (0+b2)(c+a)/abc

=>b2c+b2a/abc

=>b(ab+bc)/abc

=>b(-ac)/abc

=>-abc/abc=-1

11 tháng 4 2020

Câu 1 :B

Câu 2: B

Câu 3:A

Câu 4 : D

Câu 5 :(mik chịu ^^)

Câu 6: A

Câu 7 : C (ko chắc nhé )

Chúc bạn học tốt !

6 tháng 5 2022

a) 3x + 18 = 0

<=>  3*(x+6)=0

<=> x+6=0

<=> x=-6

Vậy S={-6}

6x-7=3x+2

<=> 6x - 3x= 2+7

<=> 3x=9

<=> x=3 

Vậy S={ 3}

c) mk ko hỉu rõ đề

11 tháng 2 2017

\(\left(Ax+B\right)\left(Cx+D\right)\Leftrightarrow\left(AC\right)x^2+\left(AD+BC\right)x+BD\)Dựa vào phương trình ta thấy:

AC=50; AD+BC=25; BD=-3

BD=-3 mà D=-1=>B=3

AD+BC=25<=> 3C-A=25

AC=50

=>A=5;C=10

Thay A,B,C,D vào ta có:

\(\left(\frac{C}{A}-B\right).D^{2017}=\left(\frac{10}{5}-3\right).\left(-1\right)^{2017}=-1.-1=1\)

11 tháng 2 2017

-3(theo định lí bezout)