Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện: 6x - 1 \(\ge\) 0 và 9x2 - 1 \(\ge\) 0
=> x \(\ge\) 1/6 và (3x -1).(3x+ 1) \(\ge\) 0 => x\(\ge\) 1/6 và 3x - 1\(\ge\) 0 => x\(\ge\)1/3
PT <=> \(\left(\sqrt{6x-1}-1\right)+\sqrt{\left(3x-1\right)\left(3x+1\right)}=0\)
<=> \(\frac{\left(\sqrt{6x-1}-1\right)\left(\sqrt{6x-1}+1\right)}{\sqrt{6x-1}+1}+\sqrt{\left(3x-1\right)\left(3x+1\right)}=0\)
<=> \(\frac{2.\left(3x-1\right)}{\sqrt{6x-1}+1}+\sqrt{\left(3x-1\right)}.\sqrt{3x+1}=0\)
<=> \(\left(\frac{2.\sqrt{3x-1}}{\sqrt{6x-1}+1}+\sqrt{3x+1}\right).\sqrt{3x-1}=0\)
<=> \(\frac{2.\sqrt{3x-1}}{\sqrt{6x-1}+1}+\sqrt{3x+1}=0\) hoặc \(\sqrt{3x-1}=0\)
+) \(\sqrt{3x-1}=0\) => x= 1/3 (thỏa mãn)
+) \(\frac{2.\sqrt{3x-1}}{\sqrt{6x-1}+1}+\sqrt{3x+1}=0\) Vô nghiệm Vì Với x \(\ge\) 1/3
=> \(\frac{2.\sqrt{3x-1}}{\sqrt{6x-1}+1}+\sqrt{3x+1}\ge0+\sqrt{3.\frac{1}{3}+1}=\sqrt{2}>0\)
Vậy PT đã cho có 1 nghiệm là x = 1/3
đề sai r,,,,,,cái kia phải là x^2-x+1 chứ
nếu đúng như tôi thì bạn chỉ cần cho cái 2 vào trong căn rồi nhân liên hợp là ok
\(\sqrt{25x^2+80x+64}+\sqrt{9x^2-6x+1}=\sqrt{4x^2+36x+81}\)
\(pt\Leftrightarrow\sqrt{\left(5x+8\right)^2}+\sqrt{\left(3x-1\right)^2}=\sqrt{\left(2x+9\right)^2}\)
\(\Leftrightarrow\left|5x+8\right|+\left|3x-1\right|=\left|2x+9\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(VT=\left|5x+8\right|+\left|-\left(3x-1\right)\right|\)
\(=\left|5x+8\right|+\left|-3x+1\right|\)
\(\ge\left|5x+8-3x+1\right|=\left|2x+9\right|=VP\)
Đẳng thức xảy ra khi \(-\frac{8}{5}\le x\le\frac{1}{3}\)
P.s:thực ra thì áp dụng căn a+căn b>= căn a+b ngay từ đầu luôn cx dc tùy
ĐKXĐ:\(x\ge\frac{1}{3}\)
Đặt \(\sqrt{6x-1}=a>0;\sqrt{9x^2-1}=b\ge0\Rightarrow a^2-b^2=6x-9x^2\)
PT \(\Leftrightarrow a+b=a^2-b^2\Leftrightarrow\left(a-b-1\right)\left(a+b\right)=0\)
Dễ thấy: \(a+b>0\) (do cách đặt)
Nên \(a=b+1\)
...
a) ĐK: \(x\ge2\)
\(\sqrt{x-1}=1+\sqrt{x-2}\)
<=>\(x-1=1+x-2+2\sqrt{\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(loại\right)\\x=2\left(tm\right)\end{cases}}}\)
b) ĐK: x>=10/3
Đặt:\(\sqrt{3x-10}=t\left(t\ge0\right)\Rightarrow3x=t^2+10\)
\(x^2+3\left(t^2+10\right)+20=2t\)
\(\Leftrightarrow x^2+3t^2-2t+50=0\)
\(\Leftrightarrow x^2+3\left(t^2-2.t.\frac{1}{3}+\frac{1}{9}\right)-\frac{1}{3}+50=0\)
<=>\(x^2+3\left(t-\frac{1}{3}\right)^2+\frac{149}{3}=0\)phương trình voo ngiệm
vào trong câu hỏi khác của mình rồi trả lời với mình xin các cậu đúng cho 3 k
Lời giải:
Đặt \(\sqrt{6x-1}=a;\sqrt{9x^2-1}=b\). Khi đó :
\(6x-9x^2=a^2-b^2\)
PT tương đương:
\(a+b=a^2-b^2\)
\(\Leftrightarrow (a+b)[1-(a-b)]=0\)
\(\Leftrightarrow \) \(\left[{}\begin{matrix}a+b=0\\a-b=1\end{matrix}\right.\)
+) Nếu \(a+b=0\Leftrightarrow \sqrt {6x-1}+\sqrt{9x^2-1}=0\)
Vì \(\sqrt{6x-1}\geq 0; \sqrt{9x^2-1}\geq 0\) nên điều trên xảy ra khi mà
\(\sqrt{6x-1}=\sqrt{9x^2-1}=0\) (vô lý)
+) Nếu \(a-b=1\Leftrightarrow \sqrt{6x-1}-\sqrt{9x^2-1}=1\)
\(\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}+1\)
\(\Leftrightarrow 6x-1=9x^2-1+1+2\sqrt{9x^2-1}\)
\(\Leftrightarrow 9x^2-6x+1+2\sqrt{9x^2-1}=0\)
\(\Leftrightarrow (3x-1)^2+2\sqrt{(3x-1)(3x+1)}=0\)
Vì \((3x-1)^2\geq 0; \sqrt{(3x-1)(3x+1)}\geq 0\) nên điều trên xảy ra khi mà:
\((3x-1)^2=\sqrt{(3x-1)(3x+1)}=0\Leftrightarrow x=\frac{1}{3}\)
Thử lại thấy đúng.
Vậy \(x=\frac{1}{3}\)
Sao trường hợp 1 lại vô lý o chỗ đó ạ