Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{7x-14}=5\)
\(\Leftrightarrow\left(\sqrt{7x-14}\right)^2=25\)
\(\Leftrightarrow\left|7x-14\right|=25\)
*Nếu \(7x-14\ge0\Rightarrow x\ge2\)
\(7x-14=25\Rightarrow x=\dfrac{39}{7}\left(TMĐK\right)\)
*Nếu \(7x-14< 0\Rightarrow x< 2\)
\(14-7x=25\Rightarrow x=-\dfrac{10}{7}\left(TMĐK\right)\)
b: \(\Leftrightarrow\sqrt{x-5}\left(\sqrt{x+5}-1\right)=0\)
=>x-5=0 hoặc x+5=1
=>x=5 hoặc x=-4(loại)
c: \(\Leftrightarrow\sqrt{25x-50}=x+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\x^2+4x+4-25x+50=0\end{matrix}\right.\Leftrightarrow x\in\left\{3;18\right\}\)
a/ \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐKXĐ : \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow2\sqrt{x-1}=2\Leftrightarrow x-1=1\Leftrightarrow x=2\)
b/ \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)
\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}+3=0\)
<=> 3 = 0 (vô lý)
=> pt vô nghiệm.
c/ \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (ĐKXĐ : x>-5/7)
\(\Leftrightarrow9x-7=7x+5\Leftrightarrow2x=12\Leftrightarrow x=6\)
d/ \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\) (ĐKXĐ : \(x\ge\frac{3}{2}\))
\(\Leftrightarrow2x-3=4\left(x-1\Leftrightarrow\right)2x=1\Leftrightarrow x=\frac{1}{2}\) (loại)
Vậy pt vô nghiệm.
bình phương 2 vế ?
a, \(\sqrt{x-2}+\sqrt{x-3}=5\left(ĐK:x\ge3\right)\)
\(< =>x+\sqrt{\left(x-2\right)\left(x-3\right)}=15\)
\(< =>\left(x-2\right)\left(x-3\right)=\left(15-x\right)\left(15-x\right)\)
\(< =>x^2-5x+6=x^2-30x+225\)
\(< =>25x-219=0\)
\(< =>x=\frac{219}{25}\)
a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)
Áp dụng BĐT Bunhiacopxki ta có:
\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)
Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)
Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=2
Do đó VT=VP khi x=2
b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:
\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)
\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)
Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:
\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)
Đối chiếu ĐK của t
\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)
a.
\(DK:49-28x-4x^2\ge0\)
PT\(\Leftrightarrow\sqrt{49-28x-4x^2}=5\)
\(\Leftrightarrow49-28x-4x^2=25\)
\(\Leftrightarrow4x^2+28x-24=0\)
\(\Leftrightarrow x^2+7x-6=0\)
Ta co:
\(\Delta=7^2-4.1.\left(-6\right)=73>0\)
\(\Rightarrow\hept{\begin{cases}x_1=\frac{-7+\sqrt{73}}{2}\left(n\right)\\x_2=\frac{-7-\sqrt{73}}{2}\left(n\right)\end{cases}}\)
Vay nghiem cua PT la \(\hept{\begin{cases}x_1=\frac{-7+\sqrt{73}}{2}\\x_2=\frac{-7-\sqrt{73}}{2}\end{cases}}\)
a) ĐK: x2 - 7x + 8 ≥ 0
Đặt √(x2 - 7x + 8) = a (1)
⇔ a2 + a - 20 = 0
⇔ a = 4 hoặc a = -5
Thay vào (1) là tìm được x, kết hợp với ĐK là xong.
b) Dễ chứng minh Vế Trái lớn hơn hoặc bằng 0.
Dấu "=" xảy ra khi x = -4; y= 4. ....... là nghiệm của pt
a) Đặt \(\left(x^2-7x;\sqrt{x^2-7x+8}\right)=\left(a;b\right)\left(b\ge0\right)\)
Phương trình đã cho tương đương với hệ
\(\left\{{}\begin{matrix}a+b=12\\b^2-a=8\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a+b=12\\b^2+b=20\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a+b=20\\\left[{}\begin{matrix}b=4\\b=-5\end{matrix}\right.\end{matrix}\right.\)(Loại no -5)
\(\left\{{}\begin{matrix}a=16\\b=4\end{matrix}\right.\)
Thay a;b vào chỗ đặt ban đầu, giải phương trình bậc 2 tìm nghiệm
c) Đặt \(\left(\sqrt{x-3};\sqrt{5-x}\right)=\left(a;b\right)\)
\(\left\{{}\begin{matrix}a+b=-\left(ab+3\right)\\a^2+b^2=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a+b=-3-ab\\\left(a+b\right)^2-2ab=2\end{matrix}\right.\)
Lại đặt \(\left(a+b;ab\right)=\left(z;t\right)\)
\(\left\{{}\begin{matrix}z=-3-t\\z^2-2t=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}z=-3-t\\z^2-2\left(-3-z\right)=2\end{matrix}\right.\)
Tiếp tục giải ;v
a) điều kiện : \(x\ge2\)
ta có : \(pt\Leftrightarrow7x-14=25\Leftrightarrow7x=39\Leftrightarrow x=\dfrac{39}{7}\)
b) điều kiện : \(x\ge5\)
ta có : \(\sqrt{x^2-25}-\sqrt{x-5}=0\Leftrightarrow\sqrt{x-5}\left(\sqrt{x+5}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-5}=0\\\sqrt{x-5}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-5=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)
vậy \(x=5;x=6\)
c) điều kiện \(x\ge2\)
ta có : \(x-5\sqrt{x-2}=-2\Leftrightarrow x-2-5\sqrt{x-2}+4=0\)
\(\Leftrightarrow x-2-\sqrt{x-2}-4\sqrt{x-2}+4=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-2}-1\right)-4\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-4\right)\left(\sqrt{x-2}-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{x-2}=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=16\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=18\end{matrix}\right.\)
vậy \(x=3;x=18\)
Mysterious Person giup mk nha