K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2020

\(\frac{2}{x^2-2015x+2014}=\frac{1}{x^2-2016x+2015}\)

\(\Leftrightarrow\frac{2}{\left(x-1\right)\left(x-2014\right)}=\frac{1}{\left(x-1\right)\left(x-2015\right)}\)

\(\Leftrightarrow\frac{2}{x-2014}=\frac{1}{x-2015}\)

áp dụng tính chất tỉ lệ thức ta có:

\(\frac{2}{x-2014-2}=\frac{1}{x-2015-1}\)

\(\Leftrightarrow\frac{2}{x-2016}-\frac{1}{x-2016}=0\)

\(\Leftrightarrow\left(x-2016\right)\left(2-1\right)=0\)

\(\Leftrightarrow x-2016=0\)

\(\Leftrightarrow x=2016\)

26 tháng 5 2015

Nhận xét: Tổng các hệ số của phương trình bằng 0 => phương trình có 1 nghiệm là 1

=> vế trái có nhân tử (x - 1)

pt <=> (x4 - 1 ) + (2015x3 - 2015x2) - (2015x - 2015)  = 0

<=> (x-1)(x+1).(x2 + 1) + 2015x2(x - 1) - 2015.(x - 1) = 0

<=> (x - 1).[(x+1).(x2 + 1) + 2015x2 - 2015] = 0

<=> (x -1). [(x+1).(x2 + 1) + 2015(x2 - 1)] = 0

<=> (x -1). [(x+1).(x2 + 1) + 2015(x - 1)(x+1)] = 0

<=> (x -1).(x+1).(x2 + 1 + 2015x - 2015 ) = 0  

<=> x - 1 = 0 hoặc  x+ 1 = 0 hoặc x2 + 1 + 2015x - 2015  = 0

+) x - 1 = 0 <=> x = 1

+) x + 1 = 0 <=> x = -1

+) x2 + 1 + 2015x - 2015 = 0 <=> x2 + 2015x - 2014 = 0 

<=> x2 +2.x. \(\frac{2015}{2}\) + \(\left(\frac{2015}{2}\right)^2\) - \(\left(\frac{2015}{2}\right)^2\)   - 2015 = 0

<=> \(\left(x-\frac{2015}{2}\right)^2=\frac{2015^2+4030}{2}\)

<=>  \(x-\frac{2015}{2}=\sqrt{\frac{2015^2+4030}{2}}\) hoặc \(x-\frac{2015}{2}=-\sqrt{\frac{2015^2+4030}{2}}\)

<=> \(x=\frac{2015}{2}+\sqrt{\frac{2015^2+4030}{2}}\)hoặc \(x=\frac{2015}{2}-\sqrt{\frac{2015^2+4030}{2}}\)

Vậy pt có 4 nghiệm...

26 tháng 5 2015

chính xác nè bạn nhớ sai ruj:

x4+2015x2+2014x+2015=0

<=>x4-x+2015x2+2015x+2015=0

<=>x(x3-1)+2015(x2+x+1)=0

<=>x(x-1)(x2+x+1)+2015(x2+x+1)=0

<=>(x2+x+1)[x(x-1)-2015]=0

<=>(x2+x+1)(x2-x-2015)=0

<=>x2+x+1=0 hoặc x2-x-2015=0

*x2+\(2x.\frac{1}{2}\)+\(\frac{1}{4}+\frac{3}{4}\)=0 

<=>(x+1/2)2+3/4=0(vô lí)

*x2-\(2x.\frac{1}{2}+\frac{1}{4}-\frac{8061}{4}\)

<=>(x-1/2)2-8061/4=0

<=>(x-1/2)2           =8061/4

<=>x-1/2              =\(\sqrt{\frac{8061}{4}}\)

<=>x                    =\(\sqrt{\frac{8061}{4}+}\frac{1}{2}\)

28 tháng 8 2015

A = 2015 - 2015x + 2015x2 - 2015x3 + 2015x4 - 2015x5 +.....+ 2015x2015

A = 2015.(1-x+x2-x3+x4-x5+...+x2015)

Thay x = 2014 và đặt

B = 1-2014+20142-20143+20144-20145+...+20142015

2014B = 2014-20142+20143-20144+20155-20146+...+20142016

2015B = 2014B + B = 1 + 20142016

=> B = \(\frac{1+2014^{2016}}{2015}\)

=> A = 2015.\(\frac{1+2014^{2016}}{2015}\)

=> A = 1+ 20142016

18 tháng 9 2015

x=2015

=> x+1=2016

=> A=x2016-(x+1).x2015+(x+1).x2014-(x+1).x2013+...+(x+1)x2-(x+1)x+2016

=x2016-x2016-x2015+x2015+x2014-x2014-x2013+...+x3+x2-x2-x+2016

=-x+2016

=-2015+2016

=1

Vậy A=1.

22 tháng 2 2018

\(x^3+2016^2+2016x+2015=x^3-1+2016x^2+2016x+2016=\left(x-1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x+2015\right)\)

22 tháng 2 2018

bạn còn thíêu vế phải nữa

\(x^4-2015x^3+2015x^2-2015x+2015\)

\(=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)(vì x=2014 nên 2015=x+1)

\(=x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)

\(=1\)

16 tháng 10 2015

bạn có: x^4 + 2016x^2 + 2015x + 2016
= x^4 + x^3 + x^2 - x^3 - x^2 - x + 2016x^2 + 2016x + 2016
= x^2(x^2 + x + 1) - x(x^2 + x + 1) + 2016(x^2 + x + 1)
= (x^2 + x + 1)(x^2 - x + 2016)

7 tháng 4 2019

  \(x^4+2016x^2+2015x+2016\)

=\(x^4+x^3+x^2+2015x^2+2015x+2015+1-x^3\)

=\(x^2\left(x^2+x+1\right)+2015\left(x^2+x+1\right)+\left(1-x\right)\left(x^2+x+1\right)\)

=\(\left(x^2+x+1\right)\left(x^2+2015+1-x\right)\)

=\(\left(x^2+x+1\right)\left(x^2-x+2016\right)\)