Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow x+y=0\) hoặc \(y+z=0\) hoặc \(z+x=0\)
+) Nếu x + y = 0 hoặc z + x = 0 thì ta không tính được giá trị biểu thức.
+) Nếu y + z = 0 thì \(y=-z\Leftrightarrow y^{2017}=-z^{2017}\Leftrightarrow y^{2017}+z^{2017}=0\)
Suy ra \(\left(x^{2016}+y^{2016}\right)\left(y^{2017}+z^{2017}\right)\left(x^{2018}+z^{2018}\right)=0\)
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow x+y=0\) hoặc \(y+z=0\) hoặc \(z+x=0\)
Tới đây bạn tự làm được rồi ^^
\(x^3-16x=y\left(y^2-4\right)\) \(\left(1\right)\)
\(5x^2=y^2-4\) \(\left(2\right)\)
\(\Rightarrow x^3-16x=y.5x^2\Leftrightarrow x\left(x^2-5yx-16\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(x^2-5yx-16=0\)
+ \(x=0\Rightarrow y^2-4=5.0=0\Rightarrow y=2\) hoặc \(y=-2\)
Thế lại vào \(\left(1\right)\) thấy thỏa, ta được 2 nghiệm \(\left(x,y\right)=\left(0;2\right),\left(0;-2\right)\)
+\(x^2-5yx-16=0\) và \(x\ne0\)
\(\Rightarrow y=\frac{x^2-16}{5x}=\frac{x}{5}-\frac{16}{5x}\)
Thế y vào \(\left(2\right)\) ta được
\(5x^2=\left(\frac{x}{5}-\frac{16}{5x}\right)^2-4\Leftrightarrow125x^2=\left(x-\frac{16}{x}\right)^2-100\Leftrightarrow125x^2=x^2+\frac{256}{x^2}-32-100\)
\(\Leftrightarrow124x^2+132-\frac{256}{x^2}=0\)\(\Leftrightarrow124x^4+132x^2-256=0\)
\(\Leftrightarrow4\left(x^2-1\right)\left(31x^2+64\right)=0\)\(\Leftrightarrow x^2=1\Leftrightarrow x=1\) hoặc \(x=-1\)
\(x=1\Rightarrow y=\frac{1}{5}-\frac{16}{1.5}=-3\)
\(x=-1\Rightarrow y=\frac{1}{-5}-\frac{16}{-5}=3\)
Thử các cặp \(\left(x,y\right)=\left(1;-3\right),\left(-1;3\right)\) vào hệ thấy thỏa mãn.
Vậy: hệ có 4 nghiệm \(\left(x,y\right)=\left(0;2\right),\left(0;-2\right);\left(1;-3\right);\left(-1;3\right)\)
Người hạnh phúc và may mắn nhất trên đời khi làm một điều gì đó tốt đẹp và mang lại niềm vui cho mọi người,một phép lạ sẽ đến với bạn khi làm một việc tốt.Hay ghi nhớ thông điệp này và gửi cho 30 đến 50 người.Sẽ có điều bất ngờ và may mắn đến với bạn sau ngày hôm đó.Nếu bạn không gửi đi ngay sau khi đọc xong,bạn sẽ luôn bị xui xẻo Ai thương mẹ thì gửi cái này cho 15 người ko gửi mà xoá đi mẹ bạn sẽ chết trong vòng 2 ngày nữa
Người hạnh phúc và may mắn nhất trên đời khi làm một điều gì đó tốt đẹp và mang lại niềm vui cho mọi người,một phép lạ sẽ đến với bạn khi làm một việc tốt.Hay ghi nhớ thông điệp này và gửi cho 30 đến 50 người.Sẽ có điều bất ngờ và may mắn đến với bạn sau ngày hôm đó.Nếu bạn không gửi đi ngay sau khi đọc xong,bạn sẽ luôn bị xui xẻo Ai thương mẹ thì gửi cái này cho 15 người ko gửi mà xoá đi mẹ bạn sẽ chết trong vòng 2 ngày nữa
Do \(x^3+y^3=1\) \(\Rightarrow x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)\)
\(\Leftrightarrow x^5+y^5=x^5+y^5+x^2y^3+x^3y^2\)
\(\Leftrightarrow x^2y^2\left(x+y\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}xy=0\\x+y=0\end{matrix}\right.\)
Nếu \(x+y=0\Rightarrow x^3=-y^3\Rightarrow x^3+y^3=0\) ( mâu thuẫn)
Nếu \(xy=0\) \(\Rightarrow x^3+y^3=1\Rightarrow\left(x+y\right)^3=1\Rightarrow x+y=1\)
ta có\(\left\{{}\begin{matrix}xy=0\\x+y=1\end{matrix}\right.\) \(\Rightarrow\left(x,y\right)=\left\{\left(1,0\right);\left(0,1\right)\right\}\)
ta có : x5 - x4 y -25x3y2 + 25 x2 y3 +144 xy4-144y5 =77
<=> x4 (x-y ) - 25x2y2 ( x-y) +144y4 (x-y) =77
<=> (x-y)(x4-25x2y2+144y4) =77
<=> (x-y)(x4-16x2y2-9x2y2+144y4 ) =77
<=> (x-y)(x2-9y2)(x2-16y2 )=77
đến đây bạn từ chia trường hợp nha
Thoy chia cả đống TH biết đường nào mà lần, bạn có cách nào để loại bớt TH ko giúp mình với
Ta có: x2 + y2 = 6 (1) và x + y - 3xy = 5 (2). Từ (1) => (x + y)2 = 2xy + 6. Từ (2) => (x + y)2 = (3xy + 5)2. Do đó ta có (3xy + 5)2 = 2xy + 6
<=> 9x2y2 + 30xy + 25 = 2xy + 6 <=> 9x2y2 + 28xy + 19 = 0 <=> (xy + 1)(9xy + 19) = 0 <=> xy = - 1 hoặc \(xy=-\frac{19}{9}\).
- Nếu xy = - 1 => \(y=\frac{-1}{x}\). Thay vào (2) ta có: \(x-\frac{1}{x}=5-3=2\Leftrightarrow x^2-2x-1=0\)
Suy ra \(x=1+\sqrt{2}\) hoặc \(x=1-\sqrt{2}\). Nếu \(x=1+\sqrt{2}\Rightarrow y=1-\sqrt{2}\);Nếu \(x=1-\sqrt{2}\Rightarrow y=1+\sqrt{2}\).
- Nếu \(xy=\frac{-19}{9}\Rightarrow y=\frac{-19}{9x}\). Thay vào (2) ta có: \(x-\frac{19}{9x}=5-3.\frac{19}{9}=\frac{-4}{3}\Leftrightarrow9x^2+12x-19=0\).
Suy ra \(x=\frac{-2+\sqrt{23}}{3}\) hoặc \(x=\frac{-2-\sqrt{23}}{3}\). Nếu \(x=\frac{-2+\sqrt{23}}{3}\Rightarrow y=\frac{-2-\sqrt{23}}{3}\);Nếu \(x=\frac{-2-\sqrt{23}}{3}\Rightarrow y=\frac{-2+\sqrt{23}}{3}\).
Vậy hệ phương trình có 4 nghiệm (x;y) là: \(\left(1+\sqrt{2};1-\sqrt{2}\right),\left(1-\sqrt{2};1+\sqrt{2}\right),\left(\frac{-2+\sqrt{23}}{3};\frac{-2-\sqrt{23}}{3}\right),\left(\frac{-2-\sqrt{23}}{3};\frac{-2+\sqrt{23}}{3}\right)\)