K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2016

\(x^3+x^2+x^2+x=0\)

\(\Rightarrow x.\left(x^2+2x+1\right)=0\)

TH1: x=0

TH2: \(x^2+2x+1=0\)

\(x^2+2x=-1\)

\(x.\left(x+2\right)=-1\)

Mà \(Ư\left(-1\right)=\left\{-1;1\right\}\)

x<x+2 => x=-1; x+2=1

Ta đều có x=-1

Vậy \(x\in\left\{-1;0\right\}\)

25 tháng 1 2016

(x^3+x^2)+(x^2+x)=0

<=>x2.(x+1)+x.(x+1)=0

<=>x.(x+1)(x+1)=0

<=>x=0 hoặc x=-1

24 tháng 4 2016

a) -2x+14=0

<=>-2x= - 14

<=>x = 7

Vậy phương trình có tập nghiệm x={7}

b)(4x-10) (x+5)=0

<=>4x-10=0 <=>4x=10 <=>x=5/2

<=>x+5=0 <=>x=-5

Vậy phương trình có tập nghiệm x={5/2;- 5}

c)\(\frac{1-x}{x+1}\) + 3=\(\frac{2x+3}{x+1}\)

ĐKXD: x+1 #0<=>x#-1(# là khác)

\(\frac{1-x}{x+1}\)+3=\(\frac{2x+3}{x+1}\)

<=>\(\frac{1-x}{x+1}\)+\(\frac{3.\left(x+1\right)}{x+1}\)=\(\frac{2x+3}{x+1}\)

<=>\(\frac{1-x}{x+1}\)+\(\frac{3x+3}{x+1}\)=\(\frac{2x+3}{x+1}\)

=>1-x+3x+3=2x+3

<=>-x+3x-2x=-1-3+3

<=>0x          = -1 (vô nghiệm)

Vâyj phương trình vô nghiệm

d) 1,2-(x-0,8)=-2(0,9+x)

<=> 1,2-x+0,8=-1,8-2x

<=>-x+2x=-1,2-0,8-1,8

<=>x=-4

Vậy phương trình có tập nghiệm x={-4}

 

1 tháng 8 2017

a, ĐKXĐ: \(x\ne\pm1\)

\(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)}{x^2-1}-\dfrac{2x}{x^2-1}=0\)

\(\Rightarrow x^2+x-2x=0\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐK\right)\\x=1\left(KTMĐK\right)\end{matrix}\right.\)

Vậy...........

b, ĐKXĐ: \(x\ne0\) ; \(x\ne2\)

\(\Leftrightarrow\dfrac{x^2-4}{x\left(x-2\right)}-\dfrac{2x+13}{x\left(x-2\right)}=0\)

\(\Rightarrow x^2-4-2x-13=0\)

\(\Leftrightarrow x^2-2x-17=0\)

\(\Leftrightarrow\left(x-1\right)^2-16=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\left(TMĐK\right)}}\)

Vậy.............

mk làm hơi tắt nha bn

25 tháng 3 2016

mi học lớp mấy

 

16 tháng 1 2016

mk ko bít

16 tháng 1 2016

ko bít mà củng trả lời lik tik @@@

 

21 tháng 2 2016

không có phương trình bạn nhé

ha

21 tháng 2 2016

bạn ơi, xem lại đề ra 1 chút, hình như có câu sai đề thì phải

Bài 1: 

\(\Delta=\left(-3\right)^2-4\left(m-1\right)=-4m+4+9=-4m+13\)

Để phương trình có hai nghiệm phân biệt thì -4m+13>0

=>-4m>-13

hay m<13/4

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m-1\end{matrix}\right.\)

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}x_1+x_2=3\\2x_1-5x_2=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=6\\2x_1-5x_2=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x_2=14\\x_1+x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=2\\x_1=1\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=m-1\)

nên m-1=2

hay m=3

Bài 2:

\(\Delta=\left(2m-4\right)^2-4\cdot\left(-2m+1\right)\)

\(=4m^2-16m+16+8m-4\)

\(=4m^2-8m+12\)

\(=4m^2-8m+4+8=\left(2m-2\right)^2+8>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Để phương trình có hai nghiệm dương thì \(\left\{{}\begin{matrix}-2\left(m-2\right)>0\\-2m+1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m< \dfrac{1}{2}\)

Bài 1: 

\(\Delta=\left(-3\right)^2-4\left(m-1\right)=-4m+4+9=-4m+13\)

Để phương trình có hai nghiệm phân biệt thì -4m+13>0

=>-4m>-13

hay m<13/4

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m-1\end{matrix}\right.\)

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}x_1+x_2=3\\2x_1-5x_2=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=6\\2x_1-5x_2=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x_2=14\\x_1+x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=2\\x_1=1\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=m-1\)

nên m-1=2

hay m=3

Bài 2:

\(\Delta=\left(2m-4\right)^2-4\cdot\left(-2m+1\right)\)

\(=4m^2-16m+16+8m-4\)

\(=4m^2-8m+12\)

\(=4m^2-8m+4+8=\left(2m-2\right)^2+8>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Để phương trình có hai nghiệm dương thì \(\left\{{}\begin{matrix}-2\left(m-2\right)>0\\-2m+1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m< \dfrac{1}{2}\)

30 tháng 5 2017

1.

đk để pt có nghiệm \(\Delta\)>0 \(\Leftrightarrow\) (-3)2 -4(m-1) >0 \(\Leftrightarrow m< \dfrac{13}{4}\)

theo viet ta có :\(\left\{{}\begin{matrix}x_1+x_2=3\left(1\right)\\x_1\cdot_{ }x_2=m-1\left(2\right)\end{matrix}\right.\)

có 2x1-5x2=-8 (3)

kết hợp (1) , (3) :\(\left\{{}\begin{matrix}x_1+x_2=3\\2x_1-5x_2=-8\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5x_1+5x_2=15\\2x_1-5x_2=-8\end{matrix}\right.\)

cộng vế trên cho vế dưới :7x1=7\(\Rightarrow\)x1=1

có (1) : x1+x2=3 \(\Rightarrow\) x2=3-x1\(\Rightarrow\)x2=3-1=2

thay x1 và x2 vừa tìm đc vào (2) ta đươc \(1\cdot2=m-1\Leftrightarrow m=3\)(tm)

vậy m=3

30 tháng 5 2017

2. đk để pt có 2 ng dương

\(\left\{{}\begin{matrix}\Delta'\ge0\\S>0\\P>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)^2-4\left(-2m+1\right)\ge0\\x_1+x_2=-2\left(m-2\right)>0\\x_1\cdot x_2=-2m+1>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m^2\ge0\forall m\\m< 2\\m< \dfrac{1}{ }\end{matrix}\right.\)\(\Leftrightarrow m< \dfrac{1}{2}\) = 0,5

vậy m < 0,5

24 tháng 5 2017

2/

Xét pt (1) có:

\(\Delta=4\left(m-2\right)^2-4.\left(-2m+1\right)\)

= \(4m^2-8m+12\)

= \(\left(2m-2\right)^2+8\)

Ta có: \(\left(2m-2\right)^2\ge0\) với mọi m

\(\Rightarrow\left(2m-2\right)^2+8>0\) với mọi m

\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt với mọi m

Áp ụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=4-2m\\x_1.x_2=1-2m\end{matrix}\right.\)

Để pt có 2 nghiệm dương \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2>0\\x_1.x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4-2m>0\\1-2m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m< \dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow m< \dfrac{1}{2}\)

Vậy với \(m< \dfrac{1}{2}\) thì pt đã cho có 2 nghiệm dương