Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)^4+\left(x+3\right)^4=16\)
\(\Leftrightarrow x+1+x+3=2\)
\(\Leftrightarrow x=-1\)
Theo bài ra , ta có :
\(\left(x-6\right)^4+\left(x-8\right)^4=16\)
\(\Leftrightarrow\left(x-6\right)^4+\left(x-8\right)^4=2^4\)
\(\Leftrightarrow\left(x-6\right)^2+\left(x-8\right)^2=2^2\)
\(\Leftrightarrow x^2-12x+36+x^2-16x+64=4\)
\(\Leftrightarrow2x^2-28x+96=0\)
\(\Leftrightarrow2x^2-16x-12x+96=0\)
\(\Leftrightarrow2x\left(x-8\right)-12\left(x-8\right)=0\)
\(\Leftrightarrow\left(x-8\right)\left(2x-12\right)=0\)
\(\Leftrightarrow2\left(x-6\right)\left(x-8\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-8=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=6\\x=8\end{cases}}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{6,8\right\}\)
Chúc bạn học tốt =))
Áp dụng tính chất giao hoán, phân phối của phép công
cố + quá= cố+ quá
quá+ cố =quá + cố
=> 2 (cố quá) =2 (quá cố)
â) \(\left(5-x\right)\left(2+3x\right)=4-9x^2\)
\(\left(5-x\right)\left(2+3x\right)=\left(2+3x\right)\left(2-3x\right)\)
\(5-x=2-3x\)
\(2x=-3\)
\(x=\frac{-3}{2}\)
Vậy ......
b) \(25-x^2=4x\left(5+x\right)\)
\(\left(5+x\right)\left(5-x\right)=4x\left(5+x\right)\)
\(5-x=4x\)
\(5x=5\)
x=1
Vậy......
a) \(\left(5-x\right)\left(2+3x\right)=4-9x^2\)
<=> \(\left(5-x\right)\left(2+3x\right)+9x^2-4=0\)
<=> \(\left(5-x\right)\left(2+3x\right)+\left(3x-2\right)\left(3x+2\right)=0\)
<=> \(\left(2+3x\right)\left(3x-2+5-x\right)=0\)
<=> \(\left(2+3x\right)\left(2x+3\right)=0\)
<=> \(\orbr{\begin{cases}2x+3=0\\3x+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{2}{3}\end{cases}}\)
b) \(25-x^2=4x\left(5+x\right)\)
<=> \(25-x^2-4x\left(5+x\right)=0\)
<=> \(\left(5-x\right)\left(5+x\right)-4x\left(5+x\right)=0\)
<=> \(\left(5+x\right)\left(5-x-4x\right)=0\)
<=> \(\left(5+x\right)\left(5-5x\right)=0\)
<=> \(\orbr{\begin{cases}5+x=0\\5-5x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-5\\x=1\end{cases}}\)
a, Đặt \(2^x=t,t>0\)
Pt trở thành: \(t^2-10t+16=0\Leftrightarrow\left(t-2\right)\left(t-8\right)=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=8\end{cases}\left(tm\right)}\)
Nếu t=2 => x=1
nếu t=8=> x=3
Vậy x=...
b, Đặt: \(2x^2-3x-1=t\)
pt trở thành: \(t^2-3\left(t-4\right)-16=0\Leftrightarrow t^2-3t-4=0\Leftrightarrow\left(t+1\right)\left(t-4\right)=0\Leftrightarrow\orbr{\begin{cases}t=-1\\t=4\end{cases}}\)
* Nếu t=-1 <=> \(2x^2-3x-1=-1\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
* Nếu t=4 <=> \(2x^2-3x-1=4\Leftrightarrow2x^2-3x-5=0\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{2}\end{cases}}\)
Vậy x=...
đặt x+4 = y => x+3 = y-1 ; x+5 = y+1
Khi đó (1) trở thành:
(y-1)^4 + (y+1)^4 = 16
<=> (y^4 - 4y^3 + 6y^2 - 4y + 1) + (y^4 + 4y^3 + 6y^2 + 4y + 1) =16
<=> 2y^4 + 12y^2 + 2 = 16
<=> y^4 + 6y^2 + 1 = 8
<=> y^4 + 6y^2 - 7 =0
<=> (y^2 - 1)(y^2 + 7) = 0
=> y^2 - 1 = 0
<=> y = +-1
<=> x+4 = +-1
<=> x = -3 ; x= -5
Vậy phương trinh đã cho có nhiệm x = -3 ; x = -5
đặt x-4 = y => x-3 = y+1 ; x-5 = y-1
Khi đó (1) trở thành:
(y-1)^4 + (y-1)^4 = tự tính
<=> (y^4 + 4y^3 - 6y^2 + 4y - 1) + (y^4 - 4y^3 - 6y^2 - 4y -1) = tự tính
<=> 2y^4 - 12y^2 - 2 = tự tính
<=> y^4 - 6y^2 - 1 = tự tính
<=> y^4 - 6y^2 + 7 = tự tính
<=> (y^2 - 1)(y^2 - 7) = tự tính
=> y^2 +1 = tự tính
<=> y = tự tính
<=> x-4 = +-1
<=>x=............;x=...........
Vậy phương trinh đã cho có nhiệm x=...........;x=.......
(x-6)^4+(x-8)^4=16
Đặt x-7=y
\(\Rightarrow\)(y+1)^4+(y-1)^4=16
y^4+4y^3+6y^2+4y+1+y^4-4y^3+6y^2-4y+1-16=0
2y^4+12y^2-14=0
y^4+6y^2-7=0
(y^4-y^2)+(7y^2-7)=0
y^2(y^2-1)+7(y^2-1)=0
(y^2-1)(y^2+7)=0
(y-1)(y+1)(y^2+7)=0
Vì y^2+7>0\(\forall\)y
\(\Rightarrow\)y-1=0 hoặc y+1=0
y=1 hoặc y=-1
+) y=1 thì x-7=1 vậy x=8
+)y=-1 thì x-7=-1 vậy x=6
Vậy x=8;x=6
a) (x - 4)^3 = (x + 4)(x^2 - x - 16)
<=> x^3 - 8x^2 + 16x - 4x^2 + 32x - 64 = x^3 - x^2 - 16x + 4x^2 - 4x - 64
<=> -12x^2 + 48x - 64 = 3x^2 - 20
<=> 12x^2 - 48x + 64 + 3x^2 - 20 = 0
<=> 15x^2 - 68x = 0
<=> x(15x - 68) = 0
<=> x = 0 hoặc 15x - 68 = 0
<=> x = 0 hoặc 15x = 68
<=> x = 0 hoặc x = 68/15
b) \(\frac{x+2}{x}=\frac{x^2+5x+4}{x^2+2x}+\frac{x}{x+2}\) (ĐKXĐ: x khác 0, x khác -2)
<=> \(\frac{x+2}{x}=\frac{\left(x+1\right)\left(x+4\right)}{x\left(x+2\right)}=\frac{x}{x+2}\)
<=> x(x + 2) + 2(x + 2) = (x + 1)(x + 4) + x^2
<=> x^2 + 2x + 2x + 4 = x^2 + 4x + x + 4 + x^2
<=> x^2 + 4x + 4 = 2x^2 + 5x + 4
<=> x^2 + 4x = 2x^2 + 5x
<=> x^2 + 4x - 2x^2 - 5x = 0
<=> -x^2 - x = 0
<=> x(x + 1) = 0
<=> x = 0 hoặc x + 1 = 0
<=> x = 0 (ktm) hoặc x = -1 (tm)
Vậy: nghiệm của phương trình là: -1
\(\Leftrightarrow\left[\left(x+1\right)^2\right]^2+\left[\left(x-1\right)^2\right]^2=16\)
\(\Leftrightarrow\left(x^2+2x+1\right)^2+\left(x^2-2x+1^2\right)=16\)
\(\Leftrightarrow x^4+4x^2+1+4x^3+4x+2x^2+x^4+4x^2+1-4x^3-4x+2x^2=16\)
\(\Leftrightarrow2x^4+12x^2+2=16\)
\(\Leftrightarrow x^4+6x^2-7=0\)
Đặt \(x^2=t\ge0\)
\(\Rightarrow t^2+6t-7=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-7\left(loai\right)\end{matrix}\right.\)
\(t=1\Rightarrow x^2=1\Rightarrow x=\pm1\)