K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2020

V t đang định hỏi câu này đấy

Kí tên:...tự bt!!!

x=1

Ai kb vs mink ko mink k cho

24 tháng 2 2017

x(x-1)+(1-x)=0\(\Leftrightarrow x^2-x+1-x=0\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy phương trình có 1 nghiệm duy nhất là x=1

27 tháng 6 2019

\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15=0\)\(Dat:x^2+8x+7=a\Rightarrow a\left(a+8\right)+15=0\Leftrightarrow a^2+8a+15=0\Leftrightarrow\left(a+3\right)\left(a+5\right)=0\Leftrightarrow\left[{}\begin{matrix}a=-3\\a=-5\end{matrix}\right.\)\(+,a=-5\Rightarrow x^2+8x+7=-5\Leftrightarrow x^2+8x+16=4\Leftrightarrow\left(x+4\right)^2=4\Rightarrow\left[{}\begin{matrix}x+4=-2\\x+4=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\left(thoaman\right)\\x=2\left(loai\right)\end{matrix}\right.\)\(+,a=-3\Rightarrow x^2+8x+7=-3\Leftrightarrow x^2+8x+16=6\Leftrightarrow\left(x+4\right)^2=6\Leftrightarrow\left[{}\begin{matrix}x+4=-\sqrt{6}\\x+4=\sqrt{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\left(\sqrt{6}+4\right)\left(thoaman\right)\\x=\sqrt{6}-4\left(thoaman\right)\end{matrix}\right.\) \(\Rightarrow x\in\left\{\sqrt{6}-4;-\sqrt{6}-4;-6\right\}\)

28 tháng 6 2019

giỏi :) pt bậc 4 loại đặc biệt đấy :) nhóm và đặt ẩn phụ là thành bậc 2 :D

24 tháng 2 2017

(x - 1) + 2(1 - x) = 0

<=> x - 1 + 2 - 2x = 0

<=> -x + 1 = 0

<=> - x = -1

<=> x = 1

24 tháng 2 2017

\(\left(x-1\right)+2\left(1-x\right)=0\)

           \(x-1+2-2x=0\)

                          \(-x+1=0\)

                                       \(x=-1\)

Vậy \(x=-1\)

23 tháng 4 2018

\(x^2-3x+2+\left|x-1\right|=0\)

\(\Leftrightarrow x^2-2x-x+2+\left|x-1\right|=0\)

\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)+\left|x-1\right|=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)+\left|x-1\right|=0\)

\(\Leftrightarrow\left|x-1\right|=\left(x-1\right)\left(2-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=\left(x-1\right)\left(2-x\right)\left(x\ge1\right)\\x-1=\left(x-1\right)\left(x-2\right)\left(x< 1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(2-x-1\right)=0\\\left(x-1\right)\left(x-2-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left[{}\begin{matrix}x=1\left(loai\right)\\x=3\left(loai\right)\end{matrix}\right.\end{matrix}\right.\)

25 tháng 8 2020

Vì \(\left(x+1\right)^4\ge0\forall x\)\(\left(x-3\right)^4\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^4+\left(x-3\right)^4\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)^4=0\\\left(x-3\right)^4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}\left(ktm\right)}\)

=> Pt vô nghiệm

25 tháng 8 2020

a)   ( x + 1 ) 4  +  ( x - 3 ) 4   = 0

Vì \(\left(x+1\right)^4\ge0\forall x\inℤ\)

     \(\left(x-3\right)^4\ge0\forall x\inℤ\)

 Nên \(\left(x+1\right)^4+\left(x-3\right)^4=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^4=0\\\left(x-3\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\x-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\x=3\end{cases}}}\)

Vậy .....

26 tháng 8 2020

Ta có : \(\left(x+1\right)^4\ge0\forall x\)

             \(\left(x+3\right)^4\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^4+\left(x+3\right)^4\ge0\forall x\)

Dấu = xảy ra khi : \(\left(x+1\right)^4+\left(x+3\right)^4=0\)

\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^4=0\\\left(x+3\right)^4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\x=-3\end{cases}\left(ktm\right)}\)

\(\Rightarrow\)phương trình vô ngiệm

26 tháng 8 2020

Ta có : 

\(\left(x+1\right)^4\ge0\forall x\)      

\(\left(x+3\right)^4\ge0\forall x\)      

Phương trình = 0 \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^4=0\\\left(x+3\right)^4=0\end{cases}}\)       

\(\hept{\begin{cases}x+1=0\\x+3=0\end{cases}}\)             

\(\hept{\begin{cases}x=-1\\x=-3\end{cases}}\)      

\(x\in\varnothing\)                  

6 tháng 4 2018

\(bpt\Leftrightarrow\left[\left(x+1\right)^2+3\right]\left(x-1\right)< 0\)

\(\left(x+1\right)^2+3>0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)

16 tháng 7 2019

\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15=0\)

\(\Leftrightarrow\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15=0\)

Đặt \(x^2+8x+11=y\Rightarrow x^2+8x+7=y-4;x^2+8x+15=y+4\)

Khi đó:

\(pt\Leftrightarrow\left(y-4\right)\left(y+4\right)+15=0\)

\(\Leftrightarrow y^2-1=0\)

\(\Leftrightarrow y=1;y=-1\)

Nếu \(y=1\Rightarrow x^2+8x+11=1\)

\(\Rightarrow x^2+8x+10=0\)

\(\Rightarrow-\left(6-x^2-8x-16\right)=0\)

\(\Rightarrow-\left[6-\left(x+4\right)^2\right]=0\)

\(\Rightarrow-\left(\sqrt{6}-x-4\right)\left(\sqrt{6}+x+4\right)=0\)

\(\Rightarrow x=-4-\sqrt{6};x=\sqrt{6}-4\)

Nếu \(y=-1\),ta có:

\(x^2+8x+11=-1\)

\(\Rightarrow x^2+8x+12=0\)

\(\Rightarrow x^2+2x+6x+12=0\)

\(\Rightarrow x\left(x+2\right)+6\left(x+2\right)=0\)

\(\Rightarrow\left(x+2\right)\left(x+6\right)=0\)

\(\Rightarrow x=-2;x=-6\)

Vậy \(x=-2;x=-6;x=-4-\sqrt{6};x=\sqrt{6}-4\)